A hybrid SGMD-CNN-transformer model for noise-robust structural damage detection with time-frequency feature integration

IF 4.3 2区 工程技术 Q1 ENGINEERING, CIVIL
Lunhai Zhi , Feng Hu , Lin Deng , Fan Kong , Kang Zhou , Xiaoliang Ma
{"title":"A hybrid SGMD-CNN-transformer model for noise-robust structural damage detection with time-frequency feature integration","authors":"Lunhai Zhi ,&nbsp;Feng Hu ,&nbsp;Lin Deng ,&nbsp;Fan Kong ,&nbsp;Kang Zhou ,&nbsp;Xiaoliang Ma","doi":"10.1016/j.istruc.2025.110165","DOIUrl":null,"url":null,"abstract":"<div><div>Structural damage detection often suffers from noise interference and complex modal behaviors. To address these issues, this study proposes a novel hybrid approach combining Symplectic Geometry Mode Decomposition (SGMD), Wavelet Synchrosqueezed Transform (WSST), Convolutional Neural Network (CNN), and Transformer architectures for robust and accurate damage detection. Experiments on a six-story steel frame structure and the IASC-ASCE Benchmark model dataset demonstrate that the complete SGMD-CNN-Transformer model achieves outstanding performance, significantly outperforming all ablated variants. Notably, the model exhibits exceptional noise immunity, maintaining consistently high detection accuracy even under severe noise conditions. This work provides strong evidence for the effectiveness and practical utility of the proposed method in structural health monitoring.</div></div>","PeriodicalId":48642,"journal":{"name":"Structures","volume":"81 ","pages":"Article 110165"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352012425019800","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Structural damage detection often suffers from noise interference and complex modal behaviors. To address these issues, this study proposes a novel hybrid approach combining Symplectic Geometry Mode Decomposition (SGMD), Wavelet Synchrosqueezed Transform (WSST), Convolutional Neural Network (CNN), and Transformer architectures for robust and accurate damage detection. Experiments on a six-story steel frame structure and the IASC-ASCE Benchmark model dataset demonstrate that the complete SGMD-CNN-Transformer model achieves outstanding performance, significantly outperforming all ablated variants. Notably, the model exhibits exceptional noise immunity, maintaining consistently high detection accuracy even under severe noise conditions. This work provides strong evidence for the effectiveness and practical utility of the proposed method in structural health monitoring.
基于时频特征集成的sgmd - cnn -变压器混合噪声鲁棒结构损伤检测模型
结构损伤检测经常受到噪声干扰和复杂模态行为的影响。为了解决这些问题,本研究提出了一种结合辛几何模态分解(SGMD)、小波同步压缩变换(WSST)、卷积神经网络(CNN)和变压器架构的新型混合方法,用于鲁棒和准确的损伤检测。在六层钢框架结构和IASC-ASCE基准模型数据集上的实验表明,完整的SGMD-CNN-Transformer模型具有出色的性能,显著优于所有烧蚀模型。值得注意的是,该模型具有出色的抗噪声能力,即使在严重的噪声条件下也能保持一贯的高检测精度。这项工作为该方法在结构健康监测中的有效性和实用性提供了强有力的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Structures
Structures Engineering-Architecture
CiteScore
5.70
自引率
17.10%
发文量
1187
期刊介绍: Structures aims to publish internationally-leading research across the full breadth of structural engineering. Papers for Structures are particularly welcome in which high-quality research will benefit from wide readership of academics and practitioners such that not only high citation rates but also tangible industrial-related pathways to impact are achieved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信