Efficiency of Markov chains for Bayesian linear regression models with heavy-tailed errors

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Yasuyuki Hamura
{"title":"Efficiency of Markov chains for Bayesian linear regression models with heavy-tailed errors","authors":"Yasuyuki Hamura","doi":"10.1016/j.jmva.2025.105506","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider posterior simulation for a linear regression model when the error distribution is given by a scale mixture of multivariate normals. We first show that a sampler given in the literature for the case of the conditionally conjugate normal-inverse Wishart prior continues to be geometrically ergodic even when the error density is heavier-tailed. Moreover, we prove that the ergodicity is uniform by verifying the minorization condition. In the second half of this note, we treat an improper case and, using a simple energy function, show that a data augmentation algorithm in the literature is geometrically ergodic under a significantly different condition.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"211 ","pages":"Article 105506"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25001010","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider posterior simulation for a linear regression model when the error distribution is given by a scale mixture of multivariate normals. We first show that a sampler given in the literature for the case of the conditionally conjugate normal-inverse Wishart prior continues to be geometrically ergodic even when the error density is heavier-tailed. Moreover, we prove that the ergodicity is uniform by verifying the minorization condition. In the second half of this note, we treat an improper case and, using a simple energy function, show that a data augmentation algorithm in the literature is geometrically ergodic under a significantly different condition.
具有重尾误差的贝叶斯线性回归模型的马尔可夫链效率
本文考虑了误差分布由多元正态的尺度混合给出的线性回归模型的后验模拟。我们首先证明了在文献中给出的条件共轭正态-逆Wishart先验情况下的采样器即使在误差密度较重的情况下仍然是几何遍历的。此外,通过验证小化条件,证明了遍历性是均匀的。在本笔记的后半部分,我们处理了一个不适当的情况,并使用一个简单的能量函数,证明了文献中的数据增强算法在一个显著不同的条件下是几何遍历的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信