Adaptive BDDC preconditioners for the bidomain model on unstructured ventricular finite element meshes

IF 7.3 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Talaat Abdelhamid , Ngoc Mai Monica Huynh , Stefano Zampini , Rongliang Chen , Luca F. Pavarino , Simone Scacchi
{"title":"Adaptive BDDC preconditioners for the bidomain model on unstructured ventricular finite element meshes","authors":"Talaat Abdelhamid ,&nbsp;Ngoc Mai Monica Huynh ,&nbsp;Stefano Zampini ,&nbsp;Rongliang Chen ,&nbsp;Luca F. Pavarino ,&nbsp;Simone Scacchi","doi":"10.1016/j.cma.2025.118366","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to develop and numerically analyze adaptive balancing domain decomposition by constraints (BDDC) preconditioners for unstructured finite element discretizations of the Bidomain model of electrocardiology on patient-specific ventricular geometries. The Bidomain model, one of the most comprehensive mathematical representations of the cardiac bioelectrical activity, consists of a system of an elliptic and a parabolic partial differential equation of reaction-diffusion type. These equations govern the propagation of electrical potentials in the cardiac tissue. They are strongly coupled with a stiff system of ordinary differential equations that describe the evolution of ionic currents across the cardiac cell membrane. Minimizing the computational cost of simulating this bioelectrical activity requires the development of efficient and scalable preconditioners for the linear systems resulting from the model’s discretization. BDDC preconditioners are nonoverlapping domain decomposition algorithms that consist of the solution of concurrent local problems on each subdomain plus a global coarse problem, whose unknowns are vertex and edge/face average values. Adaptive BDDC preconditioners represent an evolution of standard BDDC methods, where the coarse problem is enriched by adding further constraints obtained by solving suitable generalized eigenvalue problems on subdomain edges and faces. The novelty of the present study is to analyze the effectiveness of such adaptive BDDC methods for unstructured finite element discretizations of the Bidomain model on patient-specific left ventricular geometries, using modern high-performance computing parallel architectures. Different refined left ventricular meshes were generated, each incorporating fiber data. The results highlight the efficiency and accuracy of the implemented preconditioners, confirming their optimality and scalability on CPUs architectures.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"447 ","pages":"Article 118366"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525006383","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to develop and numerically analyze adaptive balancing domain decomposition by constraints (BDDC) preconditioners for unstructured finite element discretizations of the Bidomain model of electrocardiology on patient-specific ventricular geometries. The Bidomain model, one of the most comprehensive mathematical representations of the cardiac bioelectrical activity, consists of a system of an elliptic and a parabolic partial differential equation of reaction-diffusion type. These equations govern the propagation of electrical potentials in the cardiac tissue. They are strongly coupled with a stiff system of ordinary differential equations that describe the evolution of ionic currents across the cardiac cell membrane. Minimizing the computational cost of simulating this bioelectrical activity requires the development of efficient and scalable preconditioners for the linear systems resulting from the model’s discretization. BDDC preconditioners are nonoverlapping domain decomposition algorithms that consist of the solution of concurrent local problems on each subdomain plus a global coarse problem, whose unknowns are vertex and edge/face average values. Adaptive BDDC preconditioners represent an evolution of standard BDDC methods, where the coarse problem is enriched by adding further constraints obtained by solving suitable generalized eigenvalue problems on subdomain edges and faces. The novelty of the present study is to analyze the effectiveness of such adaptive BDDC methods for unstructured finite element discretizations of the Bidomain model on patient-specific left ventricular geometries, using modern high-performance computing parallel architectures. Different refined left ventricular meshes were generated, each incorporating fiber data. The results highlight the efficiency and accuracy of the implemented preconditioners, confirming their optimality and scalability on CPUs architectures.
非结构化心室有限元网格双域模型的自适应BDDC预调节器
本研究旨在开发和数值分析基于约束的自适应平衡域分解(BDDC)预调节器,用于针对患者特定心室几何形状的心电学biddomain模型的非结构化有限元离散化。biddomain模型是心脏生物电活动最全面的数学表示之一,它由一个椭圆型和一个抛物线型反应扩散型偏微分方程系统组成。这些方程式控制着心脏组织中电位的传播。它们与描述穿过心脏细胞膜的离子电流演变的僵硬的常微分方程系统紧密耦合。为了使模拟这种生物电活动的计算成本最小化,需要为模型离散化产生的线性系统开发有效且可扩展的预调节器。BDDC预条件是由每个子域上并发局部问题的解和一个全局粗糙问题的解组成的无重叠域分解算法,其未知数为顶点和边/面平均值。自适应BDDC预调节器是标准BDDC方法的发展,通过在子域边和面上求解合适的广义特征值问题,增加进一步的约束,丰富了粗糙问题。本研究的新颖之处在于,利用现代高性能并行计算架构,分析了这种自适应BDDC方法对患者特定左心室几何形状的biddomain模型进行非结构化有限元离散化的有效性。生成了不同的细化左心室网格,每个网格都包含纤维数据。结果表明所实现的预调节器的效率和准确性,证实了它们在cpu架构上的最优性和可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信