{"title":"An adaptive K-means and reinforcement learning (RL) algorithm to effective vaccine distribution","authors":"Elson Cibaku , İ. Esra Büyüktahtakın","doi":"10.1016/j.cor.2025.107275","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new adaptive reinforcement learning (RL) approach, integrated with a K-means clustering algorithm and guided by simulated annealing, to address the capacitated vehicle routing for vaccine distribution (CVRVD) problem. This integrated method provides an efficient and scalable solution for optimizing vaccine distribution logistics. By incorporating cost factors related to travel distance, inventory levels, and penalty terms – while adhering to delivery time windows – our approach improves both operational efficiency and vaccine allocation effectiveness. Experimental results demonstrate that our K-means supported RL algorithm significantly outperforms traditional solvers in tackling this NP-hard problem, particularly in large-scale scenarios. Specifically, our approach can efficiently solve CVRVD instances with up to 1,000 facilities—scenarios that are computationally intractable for exact methods. We demonstrate the effectiveness of the adaptive K-means supported RL algorithm using data from New Jersey, USA, where facility-level vaccination data were available through the state’s Immunization Information System. Beyond vaccine distribution, our method has broad applicability in logistics and transportation, enabling more efficient and cost-effective allocation of critical resources such as vaccines and medical supplies.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"185 ","pages":"Article 107275"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825003041","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a new adaptive reinforcement learning (RL) approach, integrated with a K-means clustering algorithm and guided by simulated annealing, to address the capacitated vehicle routing for vaccine distribution (CVRVD) problem. This integrated method provides an efficient and scalable solution for optimizing vaccine distribution logistics. By incorporating cost factors related to travel distance, inventory levels, and penalty terms – while adhering to delivery time windows – our approach improves both operational efficiency and vaccine allocation effectiveness. Experimental results demonstrate that our K-means supported RL algorithm significantly outperforms traditional solvers in tackling this NP-hard problem, particularly in large-scale scenarios. Specifically, our approach can efficiently solve CVRVD instances with up to 1,000 facilities—scenarios that are computationally intractable for exact methods. We demonstrate the effectiveness of the adaptive K-means supported RL algorithm using data from New Jersey, USA, where facility-level vaccination data were available through the state’s Immunization Information System. Beyond vaccine distribution, our method has broad applicability in logistics and transportation, enabling more efficient and cost-effective allocation of critical resources such as vaccines and medical supplies.
期刊介绍:
Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.