{"title":"Learning-guided iterated local search for the minmax multiple traveling salesman problem","authors":"Pengfei He , Jin-Kao Hao , Jinhui Xia","doi":"10.1016/j.cor.2025.107255","DOIUrl":null,"url":null,"abstract":"<div><div>The minmax multiple traveling salesman problem involves minimizing the costs of a longest tour among a set of tours. The problem is of great practical interest because it can be used to formulate several real-life applications. To solve this computationally challenging problem, we propose a learning-driven iterated local search approach that combines an effective local search procedure to find high-quality local optimal solutions and a multi-armed bandit algorithm to select removal and insertion operators to escape local optimal traps. Extensive experiments on 77 commonly used benchmark instances show that the algorithm achieves excellent results in terms of solution quality and running time. In particular, it achieves 32 new best results (improved upper bounds) and matches the best-known results for 35 other instances. Additional experiments shed light on the understanding of the algorithm’s constituent elements. Multi-armed bandit selection can be used advantageously in other multi-operator local search algorithms.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"185 ","pages":"Article 107255"},"PeriodicalIF":4.3000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054825002849","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The minmax multiple traveling salesman problem involves minimizing the costs of a longest tour among a set of tours. The problem is of great practical interest because it can be used to formulate several real-life applications. To solve this computationally challenging problem, we propose a learning-driven iterated local search approach that combines an effective local search procedure to find high-quality local optimal solutions and a multi-armed bandit algorithm to select removal and insertion operators to escape local optimal traps. Extensive experiments on 77 commonly used benchmark instances show that the algorithm achieves excellent results in terms of solution quality and running time. In particular, it achieves 32 new best results (improved upper bounds) and matches the best-known results for 35 other instances. Additional experiments shed light on the understanding of the algorithm’s constituent elements. Multi-armed bandit selection can be used advantageously in other multi-operator local search algorithms.
期刊介绍:
Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.