Paolo De Angelis , Giulio Barletta , Giovanni Trezza , Pietro Asinari , Eliodoro Chiavazzo
{"title":"Energy-GNoME: A living database of selected materials for energy applications","authors":"Paolo De Angelis , Giulio Barletta , Giovanni Trezza , Pietro Asinari , Eliodoro Chiavazzo","doi":"10.1016/j.egyai.2025.100605","DOIUrl":null,"url":null,"abstract":"<div><div>Artificial Intelligence (AI) in materials science is driving significant advancements in the discovery of advanced materials for energy applications. The recent GNoME protocol identifies over 380,000 novel stable crystals. From this, we identify over 38,500 materials with potential as energy materials forming the core of the Energy-GNoME database. Our unique combination of Machine Learning (ML) and Deep Learning (DL) tools mitigates cross-domain data bias using feature spaces, thus identifying potential candidates for thermoelectric materials, novel battery cathodes, and novel perovskites. First, classifiers with both structural and compositional features detect domains of applicability, where we expect enhanced reliability of regressors. Here, regressors are trained to predict key materials properties, like thermoelectric figure of merit (<span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span>), band gap (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>), and cathode voltage (<span><math><mrow><mi>Δ</mi><msub><mrow><mi>V</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>). This method significantly narrows the pool of potential candidates, serving as an efficient guide for experimental and computational chemistry investigations and accelerating the discovery of materials suited for electricity generation, energy storage and conversion.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"22 ","pages":"Article 100605"},"PeriodicalIF":9.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825001375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Artificial Intelligence (AI) in materials science is driving significant advancements in the discovery of advanced materials for energy applications. The recent GNoME protocol identifies over 380,000 novel stable crystals. From this, we identify over 38,500 materials with potential as energy materials forming the core of the Energy-GNoME database. Our unique combination of Machine Learning (ML) and Deep Learning (DL) tools mitigates cross-domain data bias using feature spaces, thus identifying potential candidates for thermoelectric materials, novel battery cathodes, and novel perovskites. First, classifiers with both structural and compositional features detect domains of applicability, where we expect enhanced reliability of regressors. Here, regressors are trained to predict key materials properties, like thermoelectric figure of merit (), band gap (), and cathode voltage (). This method significantly narrows the pool of potential candidates, serving as an efficient guide for experimental and computational chemistry investigations and accelerating the discovery of materials suited for electricity generation, energy storage and conversion.