{"title":"Active contour model based on pre- additive bias field fitting image","authors":"Yang Chen, Guirong Weng","doi":"10.1016/j.image.2025.117404","DOIUrl":null,"url":null,"abstract":"<div><div>With regards to figure with inhomogeneous intensity, the models based on active contour model have been widely used. Compared with the classic models, this paper proposes an optimized additive model which contains the edge structure and inhomogeneous components. Second, by introducing a novel clustering criterion, the value of the bias field can be estimated before iteration, greatly speeding the evloving process and reducing the calculation cost. Thus, an improved energy function is drawn out. Considering the gradient descent flow formula, a novel error function and adaptive parameter are utilized to improve the performance of the data term. Finally, the proposed regularization terms ensure the evloving process is more efficient and accurate. Owing to the above mentioned improvements, the proposed model in this paper has excellent performance of the segmentation in terms of robustness, effectiveness and accuracy.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"139 ","pages":"Article 117404"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092359652500150X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With regards to figure with inhomogeneous intensity, the models based on active contour model have been widely used. Compared with the classic models, this paper proposes an optimized additive model which contains the edge structure and inhomogeneous components. Second, by introducing a novel clustering criterion, the value of the bias field can be estimated before iteration, greatly speeding the evloving process and reducing the calculation cost. Thus, an improved energy function is drawn out. Considering the gradient descent flow formula, a novel error function and adaptive parameter are utilized to improve the performance of the data term. Finally, the proposed regularization terms ensure the evloving process is more efficient and accurate. Owing to the above mentioned improvements, the proposed model in this paper has excellent performance of the segmentation in terms of robustness, effectiveness and accuracy.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.