Toward Grünbaum’s conjecture bounding vertices of degree 4

IF 1 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Christian Ortlieb
{"title":"Toward Grünbaum’s conjecture bounding vertices of degree 4","authors":"Christian Ortlieb","doi":"10.1016/j.tcs.2025.115551","DOIUrl":null,"url":null,"abstract":"<div><div>Given a spanning tree <span><math><mi>T</mi></math></span> of a planar graph <span><math><mi>G</mi></math></span>, the <em>co-tree</em> of <span><math><mi>T</mi></math></span> is the spanning tree of the dual graph <span><math><msup><mi>G</mi><mo>*</mo></msup></math></span> with edge set <span><math><msup><mrow><mo>(</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mi>E</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>*</mo></msup></math></span>. Grünbaum conjectured in 1970 that every planar 3-connected graph <span><math><mi>G</mi></math></span> contains a spanning tree <span><math><mi>T</mi></math></span> such that both <span><math><mi>T</mi></math></span> and its co-tree have maximum degree at most 3.</div><div>While Grünbaum’s conjecture remains open, Schmidt and the author recently improved the upper bound on the maximum degree from 5 (Biedl 2014) to 4.</div><div>In this paper, we modify this approach taking a further step towards Grünbaum’s conjecture. We again obtain a spanning tree <span><math><mi>T</mi></math></span> such that both <span><math><mi>T</mi></math></span> and its co-tree have maximum degree at most 4 and, additionally, an upper bound on the number of vertices of degree 4 of <span><math><mi>T</mi></math></span> and its co-tree.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1056 ","pages":"Article 115551"},"PeriodicalIF":1.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030439752500489X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Given a spanning tree T of a planar graph G, the co-tree of T is the spanning tree of the dual graph G* with edge set (E(G)E(T))*. Grünbaum conjectured in 1970 that every planar 3-connected graph G contains a spanning tree T such that both T and its co-tree have maximum degree at most 3.
While Grünbaum’s conjecture remains open, Schmidt and the author recently improved the upper bound on the maximum degree from 5 (Biedl 2014) to 4.
In this paper, we modify this approach taking a further step towards Grünbaum’s conjecture. We again obtain a spanning tree T such that both T and its co-tree have maximum degree at most 4 and, additionally, an upper bound on the number of vertices of degree 4 of T and its co-tree.
向着格纳鲍姆猜想的4次边界顶点
给定一个平面图G的生成树T, T的余树是边集为(E(G)−E(T))*的对偶图G*的生成树。gr nbaum在1970年推测,每一个平面3连通图G都包含一棵生成树T,使得T和它的协树的最大度都不超过3。虽然gr nbaum猜想仍然开放,但Schmidt和作者最近将最大度的上界从5 (Biedl 2014)改进为4。在本文中,我们修改了这种方法,进一步向gr nbaum猜想迈进了一步。我们再次得到一个生成树T,使得T和它的协树的最大度数不超过4,另外,T和它的协树的4度数的顶点数有一个上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theoretical Computer Science
Theoretical Computer Science 工程技术-计算机:理论方法
CiteScore
2.60
自引率
18.20%
发文量
471
审稿时长
12.6 months
期刊介绍: Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信