SBV functions in Carnot–Carathéodory spaces

IF 1.3 2区 数学 Q1 MATHEMATICS
Marco Di Marco , Sebastiano Don , Davide Vittone
{"title":"SBV functions in Carnot–Carathéodory spaces","authors":"Marco Di Marco ,&nbsp;Sebastiano Don ,&nbsp;Davide Vittone","doi":"10.1016/j.na.2025.113944","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the space SBV<span><math><msub><mrow></mrow><mrow><mi>X</mi></mrow></msub></math></span> of special functions with bounded <span><math><mi>X</mi></math></span>-variation in Carnot–Carathéodory spaces and study its main properties. Our main outcome is an approximation result, with respect to the BV<span><math><msub><mrow></mrow><mrow><mi>X</mi></mrow></msub></math></span> topology, for SBV<span><math><msub><mrow></mrow><mrow><mi>X</mi></mrow></msub></math></span> functions.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113944"},"PeriodicalIF":1.3000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001968","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the space SBVX of special functions with bounded X-variation in Carnot–Carathéodory spaces and study its main properties. Our main outcome is an approximation result, with respect to the BVX topology, for SBVX functions.
SBV在carnot - carath空间中的作用
引入了carnot - carathacimodory空间中具有有界x变分的特殊函数的空间SBVX,并研究了其主要性质。我们的主要结果是关于SBVX函数的BVX拓扑的近似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信