Corrigendum to “Large Deviations for Generalized Polya urns with arbitrary Urn Function” [Stochastic Processes and their Applications 127 (2017) 3372 – 3411]

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
Simone Franchini
{"title":"Corrigendum to “Large Deviations for Generalized Polya urns with arbitrary Urn Function” [Stochastic Processes and their Applications 127 (2017) 3372 – 3411]","authors":"Simone Franchini","doi":"10.1016/j.spa.2025.104745","DOIUrl":null,"url":null,"abstract":"<div><div>We find and correct a mistake in the formulas for the cumulant generating function <span><math><mi>ψ</mi></math></span> of the linear urn problem that are given in the Corollary 12 of Franchini (2017), and its proof. In particular, the correct function <span><math><msub><mrow><mi>ψ</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> is as follows: <span><span><span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mo>+</mo></mrow></msub><mfenced><mrow><mi>λ</mi><mo>;</mo><mi>b</mi><mo>&gt;</mo><mn>0</mn></mrow></mfenced></mrow></msup><mo>=</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></mfrac><msup><mrow><mi>e</mi></mrow><mrow><mfrac><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></mfrac><mi>λ</mi></mrow></msup><msup><mrow><mfenced><mrow><mn>1</mn><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></mfrac></mrow></msup><mi>B</mi><mfenced><mrow><mfrac><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>b</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>b</mi></mrow></mfrac><mo>;</mo><mn>1</mn><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msup><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></math></span></span></span>for the positive branch <span><math><mrow><mi>b</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><span><span><math><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><msub><mrow><mi>ψ</mi></mrow><mrow><mo>+</mo></mrow></msub><mfenced><mrow><mi>λ</mi><mo>;</mo><mi>b</mi><mo>&lt;</mo><mn>0</mn></mrow></mfenced></mrow></msup><mo>=</mo><mn>1</mn><mo>+</mo><mfrac><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></mfrac><msup><mrow><mi>e</mi></mrow><mrow><mfrac><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></mfrac><mi>λ</mi></mrow></msup><msup><mrow><mfenced><mrow><mn>1</mn><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msup></mrow></mfenced></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>b</mi></mrow></mfrac></mrow></msup><mi>B</mi><mfenced><mrow><mfrac><mrow><mi>a</mi></mrow><mrow><mi>b</mi></mrow></mfrac><mo>,</mo><mfrac><mrow><mi>b</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>b</mi></mrow></mfrac><mo>;</mo><mn>0</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mi>λ</mi></mrow></msup></mrow></mfenced></mrow></math></span></span></span>for the negative branch <span><math><mrow><mi>b</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>. We remark that this issue does not affect the main result, nor any other finding of the paper. We also correct a minor typo in the proof of Theorem 9.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"189 ","pages":"Article 104745"},"PeriodicalIF":1.2000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925001899","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We find and correct a mistake in the formulas for the cumulant generating function ψ of the linear urn problem that are given in the Corollary 12 of Franchini (2017), and its proof. In particular, the correct function ψ+ is as follows: eψ+λ;b>0=1abeabλ1eλ1bBab,b1b;1eλ,1for the positive branch b>0 and eψ+λ;b<0=1+abeabλ1eλ1bBab,b1b;0,1eλfor the negative branch b<0. We remark that this issue does not affect the main result, nor any other finding of the paper. We also correct a minor typo in the proof of Theorem 9.
“具有任意Urn函数的广义Polya Urn的大偏差”的勘误表[随机过程及其应用127 (2017)3372 - 3411]
我们发现并纠正了Franchini(2017)的推论12中给出的线性瓮问题的累积生成函数ψ的公式及其证明中的一个错误。特别地,正确的ψ+函数如下:e−ψ+λ;b>0=1−ababλ 1−e−λ 1bbb,b−1b;1−e−λ,1对于正分支b>;0和e−ψ+λ;b<0=1+ ababλ 1−e−λ, b−1b;0,1−e−λ为负支路;我们注意到这个问题不影响主要结果,也不影响论文的任何其他发现。我们还纠正了定理9证明中的一个小错别字。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信