Virtual element methods for HJB equations with Cordes coefficients

IF 7.3 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Ying Cai , Hailong Guo , Zhimin Zhang
{"title":"Virtual element methods for HJB equations with Cordes coefficients","authors":"Ying Cai ,&nbsp;Hailong Guo ,&nbsp;Zhimin Zhang","doi":"10.1016/j.cma.2025.118362","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose and analyze both conforming and nonconforming virtual element methods (VEMs) for the fully nonlinear second-order elliptic Hamilton-Jacobi-Bellman (HJB) equations with Cordes coefficients. By incorporating stabilization terms, we establish the well-posedness of the proposed methods, thus avoiding the need to construct a discrete Miranda-Talenti estimate. We derive the optimal error estimate in the discrete <span><math><msup><mi>H</mi><mn>2</mn></msup></math></span> norm for both numerical formulations. Furthermore, a semismooth Newton’s method is employed to linearize the discrete problems. Several numerical experiments using the lowest-order VEMs are provided to demonstrate the efficacy of the proposed methods and to validate our theoretical results.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"447 ","pages":"Article 118362"},"PeriodicalIF":7.3000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525006346","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose and analyze both conforming and nonconforming virtual element methods (VEMs) for the fully nonlinear second-order elliptic Hamilton-Jacobi-Bellman (HJB) equations with Cordes coefficients. By incorporating stabilization terms, we establish the well-posedness of the proposed methods, thus avoiding the need to construct a discrete Miranda-Talenti estimate. We derive the optimal error estimate in the discrete H2 norm for both numerical formulations. Furthermore, a semismooth Newton’s method is employed to linearize the discrete problems. Several numerical experiments using the lowest-order VEMs are provided to demonstrate the efficacy of the proposed methods and to validate our theoretical results.
带Cordes系数的HJB方程的虚元法
本文提出并分析了具有Cordes系数的全非线性二阶椭圆型Hamilton-Jacobi-Bellman (HJB)方程的符合性和非符合性虚元法。通过引入稳定项,我们建立了所提出方法的适定性,从而避免了构建离散Miranda-Talenti估计的需要。我们推导了两种数值公式在离散H2范数下的最优误差估计。在此基础上,采用半光滑牛顿法对离散问题进行线性化处理。最后给出了几个使用最低阶VEMs的数值实验,证明了所提方法的有效性,并验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信