Ultrasound-activated directional and controllable nitric oxide therapy for vascular calcification repair through the modulation of eNOS/iNOS homeostasis.

IF 9.6
Chunxia Liu, Mengjing Lin, Jing Dai, Binglin Chen, Jiali Wang, Jingyi Li, Xiaoyun Li, Ziyun Jiang, Miao Xiao, Mingliang Tang
{"title":"Ultrasound-activated directional and controllable nitric oxide therapy for vascular calcification repair through the modulation of eNOS/iNOS homeostasis.","authors":"Chunxia Liu, Mengjing Lin, Jing Dai, Binglin Chen, Jiali Wang, Jingyi Li, Xiaoyun Li, Ziyun Jiang, Miao Xiao, Mingliang Tang","doi":"10.1016/j.actbio.2025.09.024","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular calcification (VC) is a critical pathological hallmark of cardiovascular diseases but current therapeutic options remain inadequate. Nitric oxide (NO) homeostasis plays a vital role in endothelial function and phenotypic transformation of vascular smooth muscle cells (VSMCs), two key pathological processes in VC. In this study, Fe₃O₄@PDA@BNN6 (FPB) nanoparticles were prepared for directional and controllable NO therapy. Magnetic field enriched the nanoparticles to the site of VC and ultrasound triggered the controllable release of NO to regulate the homeostasis of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS), further activated sGC-cGMP-PKG signaling pathway. Both in the rat and in vitro VC models, the innovative therapy inhibited osteogenic like transformation of VSMCs, alleviated endothelial inflammatory response, regulated eNOS/iNOS homeostasis, and effectively improved VC. By ensuring optimal NO bioavailability for vascular homeostasis, this magneto-ultrasonically controlled strategy overcomes limitations of conventional NO-based therapies and paves the way for precision NO-mediated interventions in cardiovascular diseases. STATEMENT OF SIGNIFICANCE: Engineering innovation: Dual-modality nanoparticle system for precision NO delivery: Magnetic guidance directs the FPB to calcified lesions, reducing systemic off-target effects. Ultrasound-triggered release of NO to ensure on-demand delivery at VC sites. Mechanistic innovation: Restoring eNOS/iNOS homeostasis as a therapeutic axis: Directional and controllable NO therapy uniquely modulates eNOS/iNOS homeostasis, further activating the sGC-cGMP-PKG signaling pathway.</p>","PeriodicalId":93848,"journal":{"name":"Acta biomaterialia","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biomaterialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.actbio.2025.09.024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vascular calcification (VC) is a critical pathological hallmark of cardiovascular diseases but current therapeutic options remain inadequate. Nitric oxide (NO) homeostasis plays a vital role in endothelial function and phenotypic transformation of vascular smooth muscle cells (VSMCs), two key pathological processes in VC. In this study, Fe₃O₄@PDA@BNN6 (FPB) nanoparticles were prepared for directional and controllable NO therapy. Magnetic field enriched the nanoparticles to the site of VC and ultrasound triggered the controllable release of NO to regulate the homeostasis of endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS), further activated sGC-cGMP-PKG signaling pathway. Both in the rat and in vitro VC models, the innovative therapy inhibited osteogenic like transformation of VSMCs, alleviated endothelial inflammatory response, regulated eNOS/iNOS homeostasis, and effectively improved VC. By ensuring optimal NO bioavailability for vascular homeostasis, this magneto-ultrasonically controlled strategy overcomes limitations of conventional NO-based therapies and paves the way for precision NO-mediated interventions in cardiovascular diseases. STATEMENT OF SIGNIFICANCE: Engineering innovation: Dual-modality nanoparticle system for precision NO delivery: Magnetic guidance directs the FPB to calcified lesions, reducing systemic off-target effects. Ultrasound-triggered release of NO to ensure on-demand delivery at VC sites. Mechanistic innovation: Restoring eNOS/iNOS homeostasis as a therapeutic axis: Directional and controllable NO therapy uniquely modulates eNOS/iNOS homeostasis, further activating the sGC-cGMP-PKG signaling pathway.

超声激活定向可控一氧化氮通过调节eNOS/iNOS稳态修复血管钙化。
血管钙化(VC)是心血管疾病的重要病理标志,但目前的治疗方案仍然不足。一氧化氮(NO)稳态在血管平滑肌细胞(VSMCs)内皮功能和表型转化中起着至关重要的作用,这是血管平滑肌细胞的两个关键病理过程。本研究制备了Fe₃O₄@PDA@BNN6 (FPB)纳米颗粒,用于定向可控NO治疗。磁场将纳米颗粒富集到VC位点,超声触发NO的可控释放,调节内皮型一氧化氮合酶(eNOS)和诱导型一氧化氮合酶(iNOS)的稳态,进一步激活sGC-cGMP-PKG信号通路。在大鼠和体外VC模型中,该创新疗法均能抑制VSMCs的成骨样转化,减轻内皮细胞炎症反应,调节eNOS/iNOS稳态,有效改善VC。通过确保血管内稳态的最佳NO生物利用度,这种磁超声控制策略克服了传统NO为基础的治疗的局限性,为NO介导的心血管疾病的精确干预铺平了道路。意义声明:工程创新:用于精确递送NO的双模态纳米颗粒系统;磁引导引导FPB到达钙化病变,减少系统脱靶效应。超声波触发一氧化氮释放,以确保按需交付在VC站点。机制创新:恢复eNOS/iNOS内稳态作为治疗轴:定向和可控NO治疗独特地调节eNOS/iNOS内稳态,进一步激活sGC-cGMP-PKG信号通路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信