Hybrid cell-membrane-coated biomimetic nanoparticles for targeted noninvasive intervention in early diabetic retinopathy.

IF 9.6
Fan Yang, Lu Zhang, Zhenping Li, Mengting Zhang, Xiaowen Deng, Difang Sun, Meng Jiang, Shushu Gui, Yufei Du, Shurong Guo, Qihang Zhou, Zongyi Zhan, Haijun Gong, Yichi Zhang, Yiming Zhou, Yuanyuan Su, Yuqing Lan
{"title":"Hybrid cell-membrane-coated biomimetic nanoparticles for targeted noninvasive intervention in early diabetic retinopathy.","authors":"Fan Yang, Lu Zhang, Zhenping Li, Mengting Zhang, Xiaowen Deng, Difang Sun, Meng Jiang, Shushu Gui, Yufei Du, Shurong Guo, Qihang Zhou, Zongyi Zhan, Haijun Gong, Yichi Zhang, Yiming Zhou, Yuanyuan Su, Yuqing Lan","doi":"10.1016/j.actbio.2025.09.023","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy (DR), a diabetes mellitus-induced ocular complication, demands non-invasive and effective early interventions to halt disease progression. Here, we developed biomimetic hybrid nanoparticles ([RBC-EC]-NPs) by coating fused membranes derived from red blood cells (RBC) and retinal endothelial cells (EC) on poly (lactic-co-glycolic acid) (PLGA) cores. Optimizing the membrane-to-PLGA ratio to 1:2 yielded stable nanoparticles that preserved critical membrane proteins, including CD47 (for immune evasion) and vascular endothelial cadherin (for endothelial targeting). The dual-coating strategy synergistically enhanced retinal endothelial targeting, suppressed pathological EC migration, and prolonged systemic circulation. In a STZ-induced diabetic rat model, intravenously administered [RBC-EC]-NPs selectively accumulated in retinal vasculature, significantly downregulating vascular endothelial growth factor expression, mitigating vascular leakage, thereby reducing formation of acellular capillary. Transcriptomic analysis revealed nanoparticle-mediated restoration of lysosomal function, lipid metabolism, and tumor necrosis factor-associated inflammatory pathways. Notably, systemic treatment also ameliorated dyslipidemia without inducing hematological or hepatic toxicity. Comprehensive biosafety evaluations confirmed the absence of acute tissue damage. Together, these findings demonstrated that [RBC-EC]-NPs could represent a potent and targeted nanotherapeutic platform for early-stage DR intervention, combining dual-cell membrane advantages with high biocompatibility. STATEMENT OF SIGNIFICANCE: Diabetic retinopathy (DR) remains a leading cause of blindness, and current treatments are largely invasive and limited to late stages. Here, we developed hybrid red blood cell-endothelial cell membrane-coated nanoparticles ([RBC-EC]-NPs) as a minimally invasive intravenous therapy. These biomimetic NPs uniquely combine endothelial targeting and immune evasion, enabling selective retinal vascular accumulation. Mechanistically, [RBC-EC]-NPs reduced VEGF overexpression, restored lysosomal-autophagy function, suppressed inflammation, and rebalanced lipid metabolism, thereby alleviating vascular leakage, preserving retinal microcirculation, and improving systemic lipid profiles in diabetic rat models. This study demonstrates the potential of [RBC-EC]-NPs as a safe, multifunctional therapeutic platform that targets the metabolic and vascular pathogenesis of early DR, offering a promising alternative to current intravitreal interventions.</p>","PeriodicalId":93848,"journal":{"name":"Acta biomaterialia","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta biomaterialia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.actbio.2025.09.023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diabetic retinopathy (DR), a diabetes mellitus-induced ocular complication, demands non-invasive and effective early interventions to halt disease progression. Here, we developed biomimetic hybrid nanoparticles ([RBC-EC]-NPs) by coating fused membranes derived from red blood cells (RBC) and retinal endothelial cells (EC) on poly (lactic-co-glycolic acid) (PLGA) cores. Optimizing the membrane-to-PLGA ratio to 1:2 yielded stable nanoparticles that preserved critical membrane proteins, including CD47 (for immune evasion) and vascular endothelial cadherin (for endothelial targeting). The dual-coating strategy synergistically enhanced retinal endothelial targeting, suppressed pathological EC migration, and prolonged systemic circulation. In a STZ-induced diabetic rat model, intravenously administered [RBC-EC]-NPs selectively accumulated in retinal vasculature, significantly downregulating vascular endothelial growth factor expression, mitigating vascular leakage, thereby reducing formation of acellular capillary. Transcriptomic analysis revealed nanoparticle-mediated restoration of lysosomal function, lipid metabolism, and tumor necrosis factor-associated inflammatory pathways. Notably, systemic treatment also ameliorated dyslipidemia without inducing hematological or hepatic toxicity. Comprehensive biosafety evaluations confirmed the absence of acute tissue damage. Together, these findings demonstrated that [RBC-EC]-NPs could represent a potent and targeted nanotherapeutic platform for early-stage DR intervention, combining dual-cell membrane advantages with high biocompatibility. STATEMENT OF SIGNIFICANCE: Diabetic retinopathy (DR) remains a leading cause of blindness, and current treatments are largely invasive and limited to late stages. Here, we developed hybrid red blood cell-endothelial cell membrane-coated nanoparticles ([RBC-EC]-NPs) as a minimally invasive intravenous therapy. These biomimetic NPs uniquely combine endothelial targeting and immune evasion, enabling selective retinal vascular accumulation. Mechanistically, [RBC-EC]-NPs reduced VEGF overexpression, restored lysosomal-autophagy function, suppressed inflammation, and rebalanced lipid metabolism, thereby alleviating vascular leakage, preserving retinal microcirculation, and improving systemic lipid profiles in diabetic rat models. This study demonstrates the potential of [RBC-EC]-NPs as a safe, multifunctional therapeutic platform that targets the metabolic and vascular pathogenesis of early DR, offering a promising alternative to current intravitreal interventions.

杂交细胞膜包覆仿生纳米颗粒用于早期糖尿病视网膜病变的靶向无创干预。
糖尿病视网膜病变(DR)是一种糖尿病引起的眼部并发症,需要非侵入性和有效的早期干预来阻止疾病进展。在这里,我们通过将来自红细胞(RBC)和视网膜内皮细胞(EC)的融合膜涂覆在聚乳酸-羟基乙酸(PLGA)核心上,开发了仿生混合纳米颗粒([RBC-EC]-NPs)。将膜与plga的比例优化为1:2,得到稳定的纳米颗粒,可以保存关键的膜蛋白,包括CD47(用于免疫逃避)和血管内皮钙粘蛋白(用于内皮靶向)。双涂层策略协同增强视网膜内皮靶向,抑制病理性EC迁移,延长体循环。在stz诱导的糖尿病大鼠模型中,静脉给药[RBC-EC]-NPs选择性地在视网膜血管中积累,显著下调血管内皮生长因子的表达,减轻血管渗漏,从而减少脱细胞毛细血管的形成。转录组学分析显示纳米颗粒介导的溶酶体功能、脂质代谢和肿瘤坏死因子相关炎症途径的恢复。值得注意的是,全身治疗也可以改善血脂异常,而不会引起血液或肝脏毒性。综合生物安全性评价证实无急性组织损伤。总之,这些发现表明,结合双细胞膜优势和高生物相容性,[RBC-EC]-NPs可以代表一种有效的靶向纳米治疗平台,用于早期DR干预。意义声明:糖尿病视网膜病变(DR)仍然是失明的主要原因,目前的治疗主要是侵入性的,仅限于晚期。在这里,我们开发了混合红细胞内皮细胞膜包被纳米颗粒([RBC-EC]-NPs)作为微创静脉治疗。这些仿生NPs独特地结合了内皮靶向和免疫逃避,使视网膜血管选择性积累。在机制上,[RBC-EC]-NPs降低了糖尿病大鼠模型中VEGF的过表达,恢复了溶酶体自噬功能,抑制了炎症,重新平衡了脂质代谢,从而减轻了血管渗漏,保持了视网膜微循环,改善了全身脂质谱。这项研究证明了[红细胞- ec]-NPs作为一种安全、多功能的治疗平台的潜力,它针对早期DR的代谢和血管发病机制,为目前的玻璃体内干预提供了一种有希望的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信