Samuel D Krabbenhoft, Tyler E Masuda, Yadwinder Kaur, Truman J Do, Siddhant U Jain, Peter W Lewis, Melissa M Harrison
{"title":"Novel modifiers of oncoprotein-mediated Polycomb inhibition in Drosophila melanogaster.","authors":"Samuel D Krabbenhoft, Tyler E Masuda, Yadwinder Kaur, Truman J Do, Siddhant U Jain, Peter W Lewis, Melissa M Harrison","doi":"10.1093/genetics/iyaf193","DOIUrl":null,"url":null,"abstract":"<p><p>Polycomb Repressive Complex 2 (PRC2) maintains epigenetic repression through the catalysis of H3K27 trimethylation (H3K27me3), which restricts gene expression and preserves developmental gene-regulatory networks. The integrity of PRC2-mediated gene silencing depends critically on the ability of PRC2 to establish and propagate H3K27me3 beyond initial recruitment sites. The oncoproteins EZHIP and histone H3 K27M specifically inhibit this propagation by blocking the allosterically activated state of PRC2, leading to global disruption of H3K27me3 patterns and developmental abnormalities. To uncover chromatin-related pathways intersecting with PRC2 repression, we developed a Drosophila melanogaster model with tissue-specific expression of EZHIP and H3 K27M. A targeted RNAi screen of conserved chromatin regulators identified genetic modifiers that when knocked down either enhanced or suppressed developmental phenotypes driven by these PRC2 inhibitors. Strong suppressors, including the Trithorax-group proteins Ash1 and Trx, the PR-DUB complex member Asx, and the nucleoporin Nup153, restored normal development despite persistent depletion of global H3K27me3. Gene expression analyses revealed that suppression reflected reduced expression of genes aberrantly activated following PRC2 inhibition. Together, these findings highlight conserved chromatin-regulatory pathways that intersect with Polycomb to maintain transcriptional balance and support developmental homeostasis.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf193","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Polycomb Repressive Complex 2 (PRC2) maintains epigenetic repression through the catalysis of H3K27 trimethylation (H3K27me3), which restricts gene expression and preserves developmental gene-regulatory networks. The integrity of PRC2-mediated gene silencing depends critically on the ability of PRC2 to establish and propagate H3K27me3 beyond initial recruitment sites. The oncoproteins EZHIP and histone H3 K27M specifically inhibit this propagation by blocking the allosterically activated state of PRC2, leading to global disruption of H3K27me3 patterns and developmental abnormalities. To uncover chromatin-related pathways intersecting with PRC2 repression, we developed a Drosophila melanogaster model with tissue-specific expression of EZHIP and H3 K27M. A targeted RNAi screen of conserved chromatin regulators identified genetic modifiers that when knocked down either enhanced or suppressed developmental phenotypes driven by these PRC2 inhibitors. Strong suppressors, including the Trithorax-group proteins Ash1 and Trx, the PR-DUB complex member Asx, and the nucleoporin Nup153, restored normal development despite persistent depletion of global H3K27me3. Gene expression analyses revealed that suppression reflected reduced expression of genes aberrantly activated following PRC2 inhibition. Together, these findings highlight conserved chromatin-regulatory pathways that intersect with Polycomb to maintain transcriptional balance and support developmental homeostasis.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.