Christian Renicke, Natalie Swinhoe, Catherine Henderson, Emily Meier, Lorraine Ling, Geraldine L Keat, Shumpei Maruyama, Maitri Rangarajan-Paul, John R Pringle, Phillip A Cleves
{"title":"Development of genetic tools for the sea anemone Aiptasia, a model system for coral biology.","authors":"Christian Renicke, Natalie Swinhoe, Catherine Henderson, Emily Meier, Lorraine Ling, Geraldine L Keat, Shumpei Maruyama, Maitri Rangarajan-Paul, John R Pringle, Phillip A Cleves","doi":"10.1093/genetics/iyaf194","DOIUrl":null,"url":null,"abstract":"<p><p>The reef-building corals can thrive in nutrient-poor waters because of the mutualistic symbiosis between the animal hosts and their photosynthetic dinoflagellate endosymbionts. This symbiosis is threatened by climate change and other anthropogenic stressors, so that a deeper mechanistic understanding of its function is not only of great basic biological interest but also crucial for developing rational approaches to coral conservation. The small sea anemone Aiptasia is an attractive model system for studies of this symbiosis but has been limited to date by a lack of effective genetic methods. Here, we describe the use of a simple electroporation protocol to introduce various genetic constructs [plasmid DNAs, mRNAs, and short-hairpin (sh) RNAs] into Aiptasia zygotes. Plasmid-based expression of reporter constructs in the resulting larvae was highly mosaic. In contrast, electroporation of mRNAs into zygotes resulted in uniform expression within the larvae, and success rates were similar when single or multiple mRNAs were introduced. The shRNAs were effective in knocking down expression of both co-electroporated mRNAs and endogenous genes. In this way, we could confirm the previously reported role of BRACHYURY in cnidarian embryonic development. In addition, we could show that knockdown of an Aiptasia homologue of the lysosomal-associated membrane protein 1 (Lamp1) interfered with larval uptake and/or retention of a symbiosis-compatible algal strain. The ability to use Aiptasia larvae for such reverse-genetic studies should greatly enhance the power of this model system and serve as a starting point for further development of genetic tools in Aiptasia and other cnidarians.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf194","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The reef-building corals can thrive in nutrient-poor waters because of the mutualistic symbiosis between the animal hosts and their photosynthetic dinoflagellate endosymbionts. This symbiosis is threatened by climate change and other anthropogenic stressors, so that a deeper mechanistic understanding of its function is not only of great basic biological interest but also crucial for developing rational approaches to coral conservation. The small sea anemone Aiptasia is an attractive model system for studies of this symbiosis but has been limited to date by a lack of effective genetic methods. Here, we describe the use of a simple electroporation protocol to introduce various genetic constructs [plasmid DNAs, mRNAs, and short-hairpin (sh) RNAs] into Aiptasia zygotes. Plasmid-based expression of reporter constructs in the resulting larvae was highly mosaic. In contrast, electroporation of mRNAs into zygotes resulted in uniform expression within the larvae, and success rates were similar when single or multiple mRNAs were introduced. The shRNAs were effective in knocking down expression of both co-electroporated mRNAs and endogenous genes. In this way, we could confirm the previously reported role of BRACHYURY in cnidarian embryonic development. In addition, we could show that knockdown of an Aiptasia homologue of the lysosomal-associated membrane protein 1 (Lamp1) interfered with larval uptake and/or retention of a symbiosis-compatible algal strain. The ability to use Aiptasia larvae for such reverse-genetic studies should greatly enhance the power of this model system and serve as a starting point for further development of genetic tools in Aiptasia and other cnidarians.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.