Anna J Moyer, Jessica A Chrabasz, Alexia Barcus, Ji Cheng, Mary E S Capps, Robert L Lalonde, Christian Mosimann, Summer B Thyme
{"title":"Genetic context of transgene insertion can influence neurodevelopment in zebrafish.","authors":"Anna J Moyer, Jessica A Chrabasz, Alexia Barcus, Ji Cheng, Mary E S Capps, Robert L Lalonde, Christian Mosimann, Summer B Thyme","doi":"10.1093/genetics/iyaf195","DOIUrl":null,"url":null,"abstract":"<p><p>The Gal4/UAS system is used across model organisms to overexpress target genes in precise cell types and relies on generating transgenic Gal4 driver lines. In zebrafish, the Tg(elavl3:KalTA4) (HuC) Gal4 line drives robust expression in neurons. We observed an increased prevalence of swim bladder defects in Tg(elavl3:KalTA4) zebrafish larvae compared to wildtype siblings, which prompted us to investigate whether transgenic larvae display additional neurobehavioral phenotypes. Tg(elavl3:KalTA4) larvae showed alterations in brain activity, brain morphology, and behavior, including increased hindbrain size and reduced activity of the cerebellum. Bulk RNA-seq analysis revealed dysregulation of the transcriptome and suggested an increased ratio of neuronal progenitor cells compared to differentiated neurons. To understand whether these phenotypes derive from Gal4 toxicity or from positional effects related to transgenesis, we used economical low-pass whole genome sequencing to map the Tol2-mediated insertion site to chromosome eight. Reduced expression of the neighboring gene gadd45ga, a known cell cycle regulator, is consistent with increased proliferation and suggests a role for positional effects. Challenges with creating alternative pan-neuronal lines include the length of the elavl3 promoter (over 8 kb) and random insertion using traditional transgenesis methods. To facilitate the generation of alternative lines, we cloned five neuronal promoters (atp6v0cb, smaller elavl3, rtn1a, sncb, and stmn1b) ranging from 1.7 kb to 4.3 kb and created KalTA4 lines using Tol2 and the phiC31 integrase-based pIGLET system. Our study highlights the importance of using appropriate genetic controls and interrogating potential positional effects in new transgenic lines.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf195","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The Gal4/UAS system is used across model organisms to overexpress target genes in precise cell types and relies on generating transgenic Gal4 driver lines. In zebrafish, the Tg(elavl3:KalTA4) (HuC) Gal4 line drives robust expression in neurons. We observed an increased prevalence of swim bladder defects in Tg(elavl3:KalTA4) zebrafish larvae compared to wildtype siblings, which prompted us to investigate whether transgenic larvae display additional neurobehavioral phenotypes. Tg(elavl3:KalTA4) larvae showed alterations in brain activity, brain morphology, and behavior, including increased hindbrain size and reduced activity of the cerebellum. Bulk RNA-seq analysis revealed dysregulation of the transcriptome and suggested an increased ratio of neuronal progenitor cells compared to differentiated neurons. To understand whether these phenotypes derive from Gal4 toxicity or from positional effects related to transgenesis, we used economical low-pass whole genome sequencing to map the Tol2-mediated insertion site to chromosome eight. Reduced expression of the neighboring gene gadd45ga, a known cell cycle regulator, is consistent with increased proliferation and suggests a role for positional effects. Challenges with creating alternative pan-neuronal lines include the length of the elavl3 promoter (over 8 kb) and random insertion using traditional transgenesis methods. To facilitate the generation of alternative lines, we cloned five neuronal promoters (atp6v0cb, smaller elavl3, rtn1a, sncb, and stmn1b) ranging from 1.7 kb to 4.3 kb and created KalTA4 lines using Tol2 and the phiC31 integrase-based pIGLET system. Our study highlights the importance of using appropriate genetic controls and interrogating potential positional effects in new transgenic lines.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.