The human ribosome modulates multidomain protein biogenesis by delaying cotranslational domain docking.

IF 10.1 1区 生物学
Grant A Pellowe, Tomas B Voisin, Laura Karpauskaite, Sarah L Maslen, Alžběta Roeselová, J Mark Skehel, Chloe Roustan, Roger George, Andrea Nans, Svend Kjær, Ian A Taylor, David Balchin
{"title":"The human ribosome modulates multidomain protein biogenesis by delaying cotranslational domain docking.","authors":"Grant A Pellowe, Tomas B Voisin, Laura Karpauskaite, Sarah L Maslen, Alžběta Roeselová, J Mark Skehel, Chloe Roustan, Roger George, Andrea Nans, Svend Kjær, Ian A Taylor, David Balchin","doi":"10.1038/s41594-025-01676-5","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins with multiple domains are intrinsically prone to misfold, yet fold efficiently during their synthesis on the ribosome. This is especially important in eukaryotes, where multidomain proteins predominate. Here we sought to understand how multidomain protein folding is modulated by the eukaryotic ribosome. We used hydrogen-deuterium exchange mass spectrometry and cryo-electron microscopy to characterize the structure and dynamics of partially synthesized intermediates of a model multidomain protein. We find that nascent subdomains fold progressively during synthesis on the human ribosome, templated by interactions across domain interfaces. The conformational ensemble of the nascent chain is tuned by its unstructured C-terminal segments, which keep interfaces between folded domains in dynamic equilibrium until translation termination. This contrasts with the bacterial ribosome, on which domain interfaces form early and remain stable during synthesis. Delayed domain docking may avoid interdomain misfolding to promote the maturation of multidomain proteins in eukaryotes.</p>","PeriodicalId":18836,"journal":{"name":"Nature Structural &Molecular Biology","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural &Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41594-025-01676-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Proteins with multiple domains are intrinsically prone to misfold, yet fold efficiently during their synthesis on the ribosome. This is especially important in eukaryotes, where multidomain proteins predominate. Here we sought to understand how multidomain protein folding is modulated by the eukaryotic ribosome. We used hydrogen-deuterium exchange mass spectrometry and cryo-electron microscopy to characterize the structure and dynamics of partially synthesized intermediates of a model multidomain protein. We find that nascent subdomains fold progressively during synthesis on the human ribosome, templated by interactions across domain interfaces. The conformational ensemble of the nascent chain is tuned by its unstructured C-terminal segments, which keep interfaces between folded domains in dynamic equilibrium until translation termination. This contrasts with the bacterial ribosome, on which domain interfaces form early and remain stable during synthesis. Delayed domain docking may avoid interdomain misfolding to promote the maturation of multidomain proteins in eukaryotes.

人类核糖体通过延迟共翻译结构域对接来调节多结构域蛋白的生物发生。
具有多个结构域的蛋白质本质上容易发生错误折叠,但在核糖体上合成时却能有效折叠。这在多结构域蛋白占主导地位的真核生物中尤为重要。在这里,我们试图了解多结构域蛋白折叠是如何被真核核糖体调节的。我们使用氢-氘交换质谱和低温电子显微镜来表征模型多结构域蛋白的部分合成中间体的结构和动力学。我们发现新生的子结构域在人类核糖体的合成过程中逐渐折叠,通过跨结构域界面的相互作用来模板化。新生链的构象集合由其非结构化的c端片段调节,它使折叠结构域之间的界面保持动态平衡,直到翻译终止。这与细菌核糖体形成鲜明对比,细菌核糖体的结构域界面形成较早,并且在合成过程中保持稳定。延迟结构域对接可以避免结构域间的错误折叠,从而促进真核生物多结构域蛋白的成熟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Structural &Molecular Biology
Nature Structural &Molecular Biology 生物-生化与分子生物学
自引率
1.80%
发文量
160
期刊介绍: Nature Structural & Molecular Biology is a monthly journal that focuses on the functional and mechanistic understanding of how molecular components in a biological process work together. It serves as an integrated forum for structural and molecular studies. The journal places a strong emphasis on the functional and mechanistic understanding of how molecular components in a biological process work together. Some specific areas of interest include the structure and function of proteins, nucleic acids, and other macromolecules, DNA replication, repair and recombination, transcription, regulation of transcription and translation, protein folding, processing and degradation, signal transduction, and intracellular signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信