Lucas Gago , Miguel A. Fernández González , Justin Engelmann , Beatriz Remeseiro , Laura Igual
{"title":"Bridging the quality gap: Robust colon wall segmentation in noisy transabdominal ultrasound","authors":"Lucas Gago , Miguel A. Fernández González , Justin Engelmann , Beatriz Remeseiro , Laura Igual","doi":"10.1016/j.compbiomed.2025.111077","DOIUrl":null,"url":null,"abstract":"<div><div>Colon wall segmentation in transabdominal ultrasound is challenging due to variations in image quality, speckle noise, and ambiguous boundaries. Existing methods struggle with low-quality images due to their inability to adapt to varying noise levels, poor boundary definition, and reduced contrast in ultrasound imaging, resulting in inconsistent segmentation performance. We present a novel quality-aware segmentation framework that simultaneously predicts image quality and adapts the segmentation process accordingly. Our approach uses a U-Net architecture with a ConvNeXt encoder backbone, enhanced with a parallel quality prediction branch that serves as a regularization mechanism. Our model learns robust features by explicitly modeling image quality during training. We evaluate our method on the C-TRUS dataset and demonstrate superior performance compared to state-of-the-art approaches, particularly on challenging low-quality images. Our method achieves Dice scores of 0.7780, 0.7025, and 0.5970 for high, medium, and low-quality images, respectively. The proposed quality-aware segmentation framework represents a significant step toward clinically viable automated colon wall segmentation systems.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"197 ","pages":"Article 111077"},"PeriodicalIF":6.3000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525014295","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Colon wall segmentation in transabdominal ultrasound is challenging due to variations in image quality, speckle noise, and ambiguous boundaries. Existing methods struggle with low-quality images due to their inability to adapt to varying noise levels, poor boundary definition, and reduced contrast in ultrasound imaging, resulting in inconsistent segmentation performance. We present a novel quality-aware segmentation framework that simultaneously predicts image quality and adapts the segmentation process accordingly. Our approach uses a U-Net architecture with a ConvNeXt encoder backbone, enhanced with a parallel quality prediction branch that serves as a regularization mechanism. Our model learns robust features by explicitly modeling image quality during training. We evaluate our method on the C-TRUS dataset and demonstrate superior performance compared to state-of-the-art approaches, particularly on challenging low-quality images. Our method achieves Dice scores of 0.7780, 0.7025, and 0.5970 for high, medium, and low-quality images, respectively. The proposed quality-aware segmentation framework represents a significant step toward clinically viable automated colon wall segmentation systems.
期刊介绍:
Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.