Yuto Kegawa, Frances Male, Irene Jiménez-Munguía, Paul S Blank, Elena Mekhedov, Gary E Ward, Joshua Zimmerberg
{"title":"The invasion pore induced by Toxoplasma gondii.","authors":"Yuto Kegawa, Frances Male, Irene Jiménez-Munguía, Paul S Blank, Elena Mekhedov, Gary E Ward, Joshua Zimmerberg","doi":"10.1038/s44319-025-00565-8","DOIUrl":null,"url":null,"abstract":"<p><p>The parasite Toxoplasma gondii invades its host cell only after secreting proteins such as invasion-requisite RON2 that inserts into the host cell membrane to establish the moving junction. Electrophysiological recordings at sub-200 µs resolution show a transient increase in host cell membrane conductance following parasite exposure. Transients always precede invasion, but parasites depleted of RON2 generate transients without invading. Thus RON2 is not essential for transient generation. Time-series analysis developed here and applied to the 910,000 data point transient dataset reveal multiple quantal conductance changes in the parasite-induced transient, consistent with rapid insertion, then slower removal, blocking, or inactivation of potential pore components. Quantal steps for wild-type RH strain parasites have a principal mode with Gaussian mean of 0.26 nS, similar in step size to the pore forming protein EXP2, part of the PTEX translocon of malaria parasites. Without RON2 the quantal mean (0.19 nS) is significantly different. Because we observe no parasite invasion without poration, the term \"invasion pore\" is proposed to describe this transient breach in host cell membrane barrier integrity during invasion.</p>","PeriodicalId":11541,"journal":{"name":"EMBO Reports","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44319-025-00565-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The parasite Toxoplasma gondii invades its host cell only after secreting proteins such as invasion-requisite RON2 that inserts into the host cell membrane to establish the moving junction. Electrophysiological recordings at sub-200 µs resolution show a transient increase in host cell membrane conductance following parasite exposure. Transients always precede invasion, but parasites depleted of RON2 generate transients without invading. Thus RON2 is not essential for transient generation. Time-series analysis developed here and applied to the 910,000 data point transient dataset reveal multiple quantal conductance changes in the parasite-induced transient, consistent with rapid insertion, then slower removal, blocking, or inactivation of potential pore components. Quantal steps for wild-type RH strain parasites have a principal mode with Gaussian mean of 0.26 nS, similar in step size to the pore forming protein EXP2, part of the PTEX translocon of malaria parasites. Without RON2 the quantal mean (0.19 nS) is significantly different. Because we observe no parasite invasion without poration, the term "invasion pore" is proposed to describe this transient breach in host cell membrane barrier integrity during invasion.
期刊介绍:
EMBO Reports is a scientific journal that specializes in publishing research articles in the fields of molecular biology, cell biology, and developmental biology. The journal is known for its commitment to publishing high-quality, impactful research that provides novel physiological and functional insights. These insights are expected to be supported by robust evidence, with independent lines of inquiry validating the findings.
The journal's scope includes both long and short-format papers, catering to different types of research contributions. It values studies that:
Communicate major findings: Articles that report significant discoveries or advancements in the understanding of biological processes at the molecular, cellular, and developmental levels.
Confirm important findings: Research that validates or supports existing knowledge in the field, reinforcing the reliability of previous studies.
Refute prominent claims: Studies that challenge or disprove widely accepted ideas or hypotheses in the biosciences, contributing to the correction and evolution of scientific understanding.
Present null data: Papers that report negative results or findings that do not support a particular hypothesis, which are crucial for the scientific process as they help to refine or redirect research efforts.
EMBO Reports is dedicated to maintaining high standards of scientific rigor and integrity, ensuring that the research it publishes contributes meaningfully to the advancement of knowledge in the life sciences. By covering a broad spectrum of topics and encouraging the publication of both positive and negative results, the journal plays a vital role in promoting a comprehensive and balanced view of scientific inquiry.