{"title":"Roles of biological heme-based sensors of O<sub>2</sub> in controlling bacterial behavior.","authors":"Florian J Fekete, Emily E Weinert","doi":"10.1016/j.jinorgbio.2025.113071","DOIUrl":null,"url":null,"abstract":"<p><p>The heme cofactor is found across all domains of life, serving a variety of purposes, such as gas transport, catalysis of reactions, and gas sensing. Heme-based gas sensors bind NO, CO, and O<sub>2</sub>, modulating cellular responses to these ligands. The widespread nature of heme proteins and the importance of oxygen to most life forms make them an intriguing system to investigate the role of heme proteins and bacterial oxygen response. Bacteria use various classes of heme sensors to detect oxygen signals, including heme-containing Per-Arnt-Sim (hPAS), and sensor globin domain-containing proteins. Globin coupled sensor (GCS) proteins have emerged as another widespread heme-based O<sub>2</sub> sensing protein family, providing insights into stabilization of O<sub>2</sub> binding and ligand-selective signaling. GCS proteins also are useful as models for intracellular cyclic-di-guanosine monophosphate (c-di-GMP) signaling, as the most extensively studied group of GCS proteins contain diguanylate cyclase (DGC) output domains, which synthesize c-di-GMP upon ligand binding. These proteins, such as Escherichia coli EcDosC (Direct Oxygen Sensor Cyclase), Pectobacterium carotovorum PccDgcO, and Bordetella pertussis BpeGReg, have been investigated regarding their heme characteristics, biochemistry, and roles in modulating bacterial response to O<sub>2</sub>. In addition, the interaction between the E. coli hPAS protein DosP and the GCS DosC highlight the complex systems used to control downstream bacterial response to environmental oxygen.</p>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":" ","pages":"113071"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jinorgbio.2025.113071","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The heme cofactor is found across all domains of life, serving a variety of purposes, such as gas transport, catalysis of reactions, and gas sensing. Heme-based gas sensors bind NO, CO, and O2, modulating cellular responses to these ligands. The widespread nature of heme proteins and the importance of oxygen to most life forms make them an intriguing system to investigate the role of heme proteins and bacterial oxygen response. Bacteria use various classes of heme sensors to detect oxygen signals, including heme-containing Per-Arnt-Sim (hPAS), and sensor globin domain-containing proteins. Globin coupled sensor (GCS) proteins have emerged as another widespread heme-based O2 sensing protein family, providing insights into stabilization of O2 binding and ligand-selective signaling. GCS proteins also are useful as models for intracellular cyclic-di-guanosine monophosphate (c-di-GMP) signaling, as the most extensively studied group of GCS proteins contain diguanylate cyclase (DGC) output domains, which synthesize c-di-GMP upon ligand binding. These proteins, such as Escherichia coli EcDosC (Direct Oxygen Sensor Cyclase), Pectobacterium carotovorum PccDgcO, and Bordetella pertussis BpeGReg, have been investigated regarding their heme characteristics, biochemistry, and roles in modulating bacterial response to O2. In addition, the interaction between the E. coli hPAS protein DosP and the GCS DosC highlight the complex systems used to control downstream bacterial response to environmental oxygen.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.