On the Parameterized Complexity of Eulerian Strong Component Arc Deletion

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Václav Blažej, Satyabrata Jana, M. S. Ramanujan, Peter Strulo
{"title":"On the Parameterized Complexity of Eulerian Strong Component Arc Deletion","authors":"Václav Blažej,&nbsp;Satyabrata Jana,&nbsp;M. S. Ramanujan,&nbsp;Peter Strulo","doi":"10.1007/s00453-025-01336-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Directed Feedback Arc Set problem and is also known to be motivated by certain scenarios arising in the study of housing markets. The complexity of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained unresolved and has been highlighted in several papers. In this work, we answer this question by ruling out (subject to the usual complexity assumptions) a fixed-parameter algorithm (FPT algorithm) for this parameter and conduct a broad analysis of the problem with respect to other natural parameterizations. We prove both positive and negative results. Among these, we demonstrate that the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth or maximum degree alone. Complementing our lower bounds, we establish that the problem is in XP when parameterized by treewidth and FPT when parameterized either by both treewidth and maximum degree or by both treewidth and solution size. We show that on simple digraphs, these algorithms have near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"87 11","pages":"1669 - 1709"},"PeriodicalIF":0.7000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00453-025-01336-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-025-01336-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the Eulerian Strong Component Arc Deletion problem, where the input is a directed multigraph and the goal is to delete the minimum number of arcs to ensure every strongly connected component of the resulting digraph is Eulerian. This problem is a natural extension of the Directed Feedback Arc Set problem and is also known to be motivated by certain scenarios arising in the study of housing markets. The complexity of the problem, when parameterized by solution size (i.e., size of the deletion set), has remained unresolved and has been highlighted in several papers. In this work, we answer this question by ruling out (subject to the usual complexity assumptions) a fixed-parameter algorithm (FPT algorithm) for this parameter and conduct a broad analysis of the problem with respect to other natural parameterizations. We prove both positive and negative results. Among these, we demonstrate that the problem is also hard (W[1]-hard or even para-NP-hard) when parameterized by either treewidth or maximum degree alone. Complementing our lower bounds, we establish that the problem is in XP when parameterized by treewidth and FPT when parameterized either by both treewidth and maximum degree or by both treewidth and solution size. We show that on simple digraphs, these algorithms have near-optimal asymptotic dependence on the treewidth assuming the Exponential Time Hypothesis.

欧拉强分量圆弧剔除的参数化复杂度
本文研究了欧拉强分量圆弧删除问题,该问题的输入是一个有向多图,目标是删除最小数量的圆弧,以保证得到的有向图的每个强连接分量都是欧拉的。这个问题是有向反馈弧集问题的自然延伸,也被认为是由住房市场研究中出现的某些场景所激发的。当用解决方案大小(即删除集的大小)参数化时,问题的复杂性仍然没有得到解决,并在几篇论文中得到了强调。在这项工作中,我们通过排除(根据通常的复杂性假设)该参数的固定参数算法(FPT算法)来回答这个问题,并针对其他自然参数化对问题进行了广泛的分析。我们证明了积极和消极的结果。其中,我们证明了当仅用树宽度或最大度参数化时,问题也是困难的(W[1]-困难甚至是准np -困难)。补充我们的下界,我们确定当用树宽参数化问题是XP,当用树宽和最大度参数化问题是FPT,或者同时用树宽和解大小参数化问题是FPT。我们证明了在简单有向图上,这些算法在指数时间假设下对树宽具有近最优的渐近依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信