Flat subspaces of the \(SL(n,\mathbb {R})\) chiral equations

IF 2.8 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
I. A. Sarmiento-Alvarado, P. Wiederhold, T. Matos
{"title":"Flat subspaces of the \\(SL(n,\\mathbb {R})\\) chiral equations","authors":"I. A. Sarmiento-Alvarado,&nbsp;P. Wiederhold,&nbsp;T. Matos","doi":"10.1007/s10714-025-03467-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we introduce a method for finding exact solutions to the vacuum Einstein field equations in higher dimensions from a given solution to the chiral equation. When considering a <span>\\(n + 2\\)</span>-dimensional spacetime with <i>n</i> commutative Killing vectors, the metric tensor can take the form <span>\\(\\hat{g} = f ( \\rho , \\zeta ) ( d \\rho ^2 + d \\zeta ^2 ) + g_{\\mu \\nu } ( \\rho , \\zeta ) d x^\\mu d x^\\nu \\)</span>. Then, the Einstein field equations in vacuum reduce to a chiral equation, <span>\\(( \\rho g_{, z} g ^{-1} )_{, \\bar{z}} + ( \\rho g_{, \\bar{z}} g ^{-1} )_{, z} = 0\\)</span>, and two differential equations, <span>\\(( \\ln f \\rho ^{1-1/n} )_{, Z} = \\frac{\\rho }{2} \\operatorname {tr} ( g_{, _Z} g^{-1} )^2\\)</span>, where <span>\\(g \\in SL( n, \\mathbb {R} )\\)</span> is the normalized matrix representation of <span>\\(g_{\\mu \\nu }\\)</span>, <span>\\(z = \\rho + i \\zeta \\)</span> and <span>\\(Z = z, \\bar{z}\\)</span>. We use the ansatz <span>\\(g = g ( \\xi ^a )\\)</span>, where the parameters <span>\\(\\xi ^a\\)</span> depend on <i>z</i> and <span>\\(\\bar{z}\\)</span> and satisfy a generalized Laplace equation, <span>\\(( \\rho \\xi ^a _{, z} )_{, \\bar{z}} + ( \\rho \\xi ^a _{, \\bar{z}} )_{, z} = 0\\)</span>. The chiral equation to the Killing equation, <span>\\(A_{a, \\xi ^b} + A_{b, \\xi ^a} = 0\\)</span>, where <span>\\(A_a = g_{, \\xi ^a} g^{-1}\\)</span>. Furthermore, we assume that the matrices <span>\\(A_a\\)</span> commute with each other; in this way, they fulfill the Killing equation.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 9","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10714-025-03467-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03467-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we introduce a method for finding exact solutions to the vacuum Einstein field equations in higher dimensions from a given solution to the chiral equation. When considering a \(n + 2\)-dimensional spacetime with n commutative Killing vectors, the metric tensor can take the form \(\hat{g} = f ( \rho , \zeta ) ( d \rho ^2 + d \zeta ^2 ) + g_{\mu \nu } ( \rho , \zeta ) d x^\mu d x^\nu \). Then, the Einstein field equations in vacuum reduce to a chiral equation, \(( \rho g_{, z} g ^{-1} )_{, \bar{z}} + ( \rho g_{, \bar{z}} g ^{-1} )_{, z} = 0\), and two differential equations, \(( \ln f \rho ^{1-1/n} )_{, Z} = \frac{\rho }{2} \operatorname {tr} ( g_{, _Z} g^{-1} )^2\), where \(g \in SL( n, \mathbb {R} )\) is the normalized matrix representation of \(g_{\mu \nu }\), \(z = \rho + i \zeta \) and \(Z = z, \bar{z}\). We use the ansatz \(g = g ( \xi ^a )\), where the parameters \(\xi ^a\) depend on z and \(\bar{z}\) and satisfy a generalized Laplace equation, \(( \rho \xi ^a _{, z} )_{, \bar{z}} + ( \rho \xi ^a _{, \bar{z}} )_{, z} = 0\). The chiral equation to the Killing equation, \(A_{a, \xi ^b} + A_{b, \xi ^a} = 0\), where \(A_a = g_{, \xi ^a} g^{-1}\). Furthermore, we assume that the matrices \(A_a\) commute with each other; in this way, they fulfill the Killing equation.

\(SL(n,\mathbb {R})\)手性方程的平子空间
在这项工作中,我们介绍了一种从手性方程的给定解求高维真空爱因斯坦场方程精确解的方法。当考虑具有n个可交换杀戮向量的\(n + 2\)维时空时,度量张量可以采用\(\hat{g} = f ( \rho , \zeta ) ( d \rho ^2 + d \zeta ^2 ) + g_{\mu \nu } ( \rho , \zeta ) d x^\mu d x^\nu \)的形式。然后,真空中的爱因斯坦场方程简化为一个手性方程\(( \rho g_{, z} g ^{-1} )_{, \bar{z}} + ( \rho g_{, \bar{z}} g ^{-1} )_{, z} = 0\)和两个微分方程\(( \ln f \rho ^{1-1/n} )_{, Z} = \frac{\rho }{2} \operatorname {tr} ( g_{, _Z} g^{-1} )^2\),其中\(g \in SL( n, \mathbb {R} )\)是\(g_{\mu \nu }\)、\(z = \rho + i \zeta \)和\(Z = z, \bar{z}\)的归一化矩阵表示。我们使用ansatz \(g = g ( \xi ^a )\),其中参数\(\xi ^a\)依赖于z和\(\bar{z}\)并满足广义拉普拉斯方程\(( \rho \xi ^a _{, z} )_{, \bar{z}} + ( \rho \xi ^a _{, \bar{z}} )_{, z} = 0\)。手性方程变成了杀戮方程\(A_{a, \xi ^b} + A_{b, \xi ^a} = 0\),其中\(A_a = g_{, \xi ^a} g^{-1}\)。进一步,我们假设矩阵\(A_a\)彼此交换;通过这种方式,他们完成了杀戮方程式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
General Relativity and Gravitation
General Relativity and Gravitation 物理-天文与天体物理
CiteScore
4.60
自引率
3.60%
发文量
136
审稿时长
3 months
期刊介绍: General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation. It welcomes in particular original articles on the following topics of current research: Analytical general relativity, including its interface with geometrical analysis Numerical relativity Theoretical and observational cosmology Relativistic astrophysics Gravitational waves: data analysis, astrophysical sources and detector science Extensions of general relativity Supergravity Gravitational aspects of string theory and its extensions Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations Quantum field theory in curved spacetime Non-commutative geometry and gravitation Experimental gravity, in particular tests of general relativity The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信