{"title":"An Ultra-Lightweight PM Electrical Motor for High-Altitude Platform Applications","authors":"Rafal Wrobel;Thomas C. Werner;Xu Deng;Daniel Noal","doi":"10.1109/TIA.2025.3583679","DOIUrl":null,"url":null,"abstract":"This paper describes key aspects of the development process of an ultra-lightweight electrical motor for solar-powered high-altitude (20 km) platform applications (HAPSs). A radial-flux permanent magnet (PM) machine topology with outer rotor and integrated direct air-cooling is considered here. The mission profile of the analysed solar-powered aircraft calls for a high-torque overload (×2.5) at take-off and a high-efficiency (>95%) at high-altitude cruise operation. Consequently, a fine balance between both operating points needs to be seen when sizing the motor. Effective thermal management of the motor at take-off is critical for achieving a compact motor design. Further to these, the motor design should enable a simple and cost-effective manufacturing and sassembly process, which makes use of the lightweight composite materials for all structural elements of the motor assembly. In this work, a careful integration between both active and structural subassemblies of the motor resulted in a significant weight reduction, with contribution of all structural components less than 5% of the overall motor weight. The theoretical and experimental results discussed in the paper confirm the key design targets of the motor are met, with a motor torque density of 10Nm/kg (take-off operation) and 94% efficiency (cruise operation). Further to the motor development process, a comprehensive insight into the existing state of the art HAPS solar-powered aircrafts with focus on the commercial electrical motor technology and motor to aircraft integration is provided to highlight some of the application driven engineering challenges.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"61 6","pages":"9243-9253"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11053179/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper describes key aspects of the development process of an ultra-lightweight electrical motor for solar-powered high-altitude (20 km) platform applications (HAPSs). A radial-flux permanent magnet (PM) machine topology with outer rotor and integrated direct air-cooling is considered here. The mission profile of the analysed solar-powered aircraft calls for a high-torque overload (×2.5) at take-off and a high-efficiency (>95%) at high-altitude cruise operation. Consequently, a fine balance between both operating points needs to be seen when sizing the motor. Effective thermal management of the motor at take-off is critical for achieving a compact motor design. Further to these, the motor design should enable a simple and cost-effective manufacturing and sassembly process, which makes use of the lightweight composite materials for all structural elements of the motor assembly. In this work, a careful integration between both active and structural subassemblies of the motor resulted in a significant weight reduction, with contribution of all structural components less than 5% of the overall motor weight. The theoretical and experimental results discussed in the paper confirm the key design targets of the motor are met, with a motor torque density of 10Nm/kg (take-off operation) and 94% efficiency (cruise operation). Further to the motor development process, a comprehensive insight into the existing state of the art HAPS solar-powered aircrafts with focus on the commercial electrical motor technology and motor to aircraft integration is provided to highlight some of the application driven engineering challenges.
期刊介绍:
The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.