Distant-to-Close Novel View Synthesis for Asteroid Surface Imaging

IF 4.4
Xiaodong Wei;Linyan Cui;Xinyu Zhao;Gangzheng Ai;Jihao Yin
{"title":"Distant-to-Close Novel View Synthesis for Asteroid Surface Imaging","authors":"Xiaodong Wei;Linyan Cui;Xinyu Zhao;Gangzheng Ai;Jihao Yin","doi":"10.1109/LGRS.2025.3605777","DOIUrl":null,"url":null,"abstract":"Predictively synthesizing high-quality, close-range asteroid surface views from distant optical remote sensing imagery is critical for mission planning and landing-site selection in asteroid exploration missions. However, distant observations inherently lack sufficient resolution and surface detail, limiting the existing novel view synthesis (NVS) methods. To address this, we introduce, to the best of our knowledge, the first framework for distant-to-close NVS, tailored for asteroid surface imaging. Our method features two key innovations. First, a 3-D Gaussian splatting (3D-GS) super-resolution (SR) module applies 2-D SR to generate high-resolution virtual close-range views from distant images, enriching the 3-D scene model with finer details. Second, an entropy-driven residual refinement strategy adaptively emphasizes structurally complex regions by assigning higher loss weights based on residual image entropy. This strategy triggers targeted subdivisions of 3-D Gaussians in the areas of high structural complexity. Experiments conducted on datasets from Hayabusa (Itokawa), Dawn (Vesta), Rosetta (67P/Churyumov-Gerasimenko), Hayabusa2 (Ryugu), and OSIRIS-REx (Bennu) missions demonstrate substantial improvements over baseline methods in quantitative metrics, such as peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and learned perceptual image patch similarity (LPIPS).","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11147178/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predictively synthesizing high-quality, close-range asteroid surface views from distant optical remote sensing imagery is critical for mission planning and landing-site selection in asteroid exploration missions. However, distant observations inherently lack sufficient resolution and surface detail, limiting the existing novel view synthesis (NVS) methods. To address this, we introduce, to the best of our knowledge, the first framework for distant-to-close NVS, tailored for asteroid surface imaging. Our method features two key innovations. First, a 3-D Gaussian splatting (3D-GS) super-resolution (SR) module applies 2-D SR to generate high-resolution virtual close-range views from distant images, enriching the 3-D scene model with finer details. Second, an entropy-driven residual refinement strategy adaptively emphasizes structurally complex regions by assigning higher loss weights based on residual image entropy. This strategy triggers targeted subdivisions of 3-D Gaussians in the areas of high structural complexity. Experiments conducted on datasets from Hayabusa (Itokawa), Dawn (Vesta), Rosetta (67P/Churyumov-Gerasimenko), Hayabusa2 (Ryugu), and OSIRIS-REx (Bennu) missions demonstrate substantial improvements over baseline methods in quantitative metrics, such as peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and learned perceptual image patch similarity (LPIPS).
小行星表面成像的远近新视点合成
从遥远的光学遥感影像中预测合成高质量的近距离小行星表面图像对于小行星探测任务的任务规划和着陆点选择至关重要。然而,远程观测本身缺乏足够的分辨率和表面细节,限制了现有的新视图合成(NVS)方法。为了解决这个问题,我们介绍了,据我们所知,为小行星表面成像量身定制的第一个远距离到近距离NVS框架。我们的方法有两个关键的创新。首先,3d高斯飞溅(3D-GS)超分辨率(SR)模块应用2d SR从远处图像生成高分辨率虚拟近景视图,以更精细的细节丰富3d场景模型。其次,熵驱动残差细化策略通过基于残差图像熵分配更高的损失权值,自适应地强调结构复杂的区域。该策略触发了高结构复杂性区域的三维高斯函数的目标细分。在Hayabusa (Itokawa), Dawn (Vesta), Rosetta (67P/Churyumov-Gerasimenko), Hayabusa2 (Ryugu)和OSIRIS-REx (Bennu)任务的数据集上进行的实验表明,在峰值信噪比(PSNR),结构相似指数测量(SSIM)和学习感知图像patch相似度(LPIPS)等定量指标上,比基线方法有了实质性的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信