Constrained Cramér-Rao Bound for Higher-Order Singular Value Decomposition

IF 2.7 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Metin Calis;Massimo Mischi;Alle-Jan van der Veen;Raj Thilak Rajan;Borbàla Hunyadi
{"title":"Constrained Cramér-Rao Bound for Higher-Order Singular Value Decomposition","authors":"Metin Calis;Massimo Mischi;Alle-Jan van der Veen;Raj Thilak Rajan;Borbàla Hunyadi","doi":"10.1109/OJSP.2025.3607278","DOIUrl":null,"url":null,"abstract":"Tensor decomposition methods for signal processing applications are an active area of research. Real data are often low-rank, noisy, and come in a higher-order format. As such, low-rank tensor approximation methods that account for the high-order structure of the data are often used for denoising. One way to represent a tensor in a low-rank form is to decompose the tensor into a set of orthonormal factor matrices and an all-orthogonal core tensor using a higher-order singular value decomposition. Under noisy measurements, the lower bound for recovering the factor matrices and the core tensor is unknown. In this paper, we exploit the well-studied constrained Cramér-Rao bound to calculate a lower bound on the mean squared error of the unbiased estimates of the components of the multilinear singular value decomposition under additive white Gaussian noise, and we validate our approach through simulations.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"6 ","pages":"1048-1055"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11153050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11153050/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Tensor decomposition methods for signal processing applications are an active area of research. Real data are often low-rank, noisy, and come in a higher-order format. As such, low-rank tensor approximation methods that account for the high-order structure of the data are often used for denoising. One way to represent a tensor in a low-rank form is to decompose the tensor into a set of orthonormal factor matrices and an all-orthogonal core tensor using a higher-order singular value decomposition. Under noisy measurements, the lower bound for recovering the factor matrices and the core tensor is unknown. In this paper, we exploit the well-studied constrained Cramér-Rao bound to calculate a lower bound on the mean squared error of the unbiased estimates of the components of the multilinear singular value decomposition under additive white Gaussian noise, and we validate our approach through simulations.
高阶奇异值分解的约束cram - rao界
张量分解方法在信号处理中的应用是一个活跃的研究领域。真实数据通常是低秩的、有噪声的,并且以高阶格式出现。因此,考虑到数据的高阶结构的低秩张量近似方法通常用于去噪。以低秩形式表示张量的一种方法是使用高阶奇异值分解将张量分解为一组标准正交因子矩阵和一个全正交核心张量。在噪声测量下,恢复因子矩阵和核心张量的下界是未知的。本文利用已被广泛研究的约束cram r- rao界,计算了加性高斯白噪声下多元线性奇异值分解分量的无偏估计均方误差的下界,并通过仿真验证了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信