{"title":"Securing Federated Learning Against Extreme Model Poisoning Attacks via Multidimensional Time Series Anomaly Detection on Local Updates","authors":"Edoardo Gabrielli;Dimitri Belli;Zoe Matrullo;Vittorio Miori;Gabriele Tolomei","doi":"10.1109/TIFS.2025.3608671","DOIUrl":null,"url":null,"abstract":"Current defense mechanisms against model poisoning attacks in federated learning (FL) systems have proven effective up to a certain threshold of malicious clients (e.g., 25% to 50%). In this work, we introduce FLANDERS, a novel pre-aggregation filter for FL that is resilient to large-scale model poisoning attacks, i.e., when malicious clients far exceed legitimate participants. FLANDERS treats the sequence of local models sent by clients in each FL round as a matrix-valued time series. Then, it identifies malicious client updates as outliers in this time series by comparing actual observations with estimates generated by a matrix autoregressive forecasting model maintained by the server. Experiments conducted in several non-iid FL setups show that FLANDERS significantly improves robustness across a wide spectrum of attacks when paired with standard and robust aggregation methods.","PeriodicalId":13492,"journal":{"name":"IEEE Transactions on Information Forensics and Security","volume":"20 ","pages":"9610-9624"},"PeriodicalIF":8.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Forensics and Security","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11164345/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Current defense mechanisms against model poisoning attacks in federated learning (FL) systems have proven effective up to a certain threshold of malicious clients (e.g., 25% to 50%). In this work, we introduce FLANDERS, a novel pre-aggregation filter for FL that is resilient to large-scale model poisoning attacks, i.e., when malicious clients far exceed legitimate participants. FLANDERS treats the sequence of local models sent by clients in each FL round as a matrix-valued time series. Then, it identifies malicious client updates as outliers in this time series by comparing actual observations with estimates generated by a matrix autoregressive forecasting model maintained by the server. Experiments conducted in several non-iid FL setups show that FLANDERS significantly improves robustness across a wide spectrum of attacks when paired with standard and robust aggregation methods.
期刊介绍:
The IEEE Transactions on Information Forensics and Security covers the sciences, technologies, and applications relating to information forensics, information security, biometrics, surveillance and systems applications that incorporate these features