{"title":"Design Criteria of Non-Isolated Bidirectional DC-DC Converters: A Review","authors":"Sobhan Sarani;Xiaodong Liang","doi":"10.1109/TIA.2025.3579450","DOIUrl":null,"url":null,"abstract":"Battery energy storage systems are widely used for renewable power generation and electric transportation systems. Bidirectional DC-DC converters (BDCs) are key components in such systems, enabling bidirectional power flow in battery charging and discharging modes. BDCs can be categorized into isolated and non-isolated. Non-isolated BDCs have lower volume, weight, and power losses, suitable for compact structures without needing galvanic isolation. In this paper, a comprehensive literature review is conducted for non-isolated BDCs, covering soft switching, current ripple reduction, high voltage gain and resiliency techniques. Soft switching aims to reduce switching losses and improve efficiency, including auxiliary circuits and non-auxiliary methods, such as interleaved structures, phase-shift modulation, and synchronous rectification. Current ripple reduction focuses on capacitive loop configurations, interleaved structures, and coupled inductor-based methods. Batteries are low-voltage power sources, BDCs can increase the output voltage to a level required by the applications through an appropriate voltage gain, and high voltage gain techniques include capacitor-based, magnetic-based, and combined networks, and mixed structures. Resiliency is explored to ensure reliable operations under adverse conditions. This review provides valuable insights into developing more efficient, reliable, and high-performance BDCs, addressing the evolving demands of modern energy systems. Future research directions in non-isolated BDCs are recommended in this paper.","PeriodicalId":13337,"journal":{"name":"IEEE Transactions on Industry Applications","volume":"61 6","pages":"8771-8798"},"PeriodicalIF":4.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industry Applications","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11034741/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Battery energy storage systems are widely used for renewable power generation and electric transportation systems. Bidirectional DC-DC converters (BDCs) are key components in such systems, enabling bidirectional power flow in battery charging and discharging modes. BDCs can be categorized into isolated and non-isolated. Non-isolated BDCs have lower volume, weight, and power losses, suitable for compact structures without needing galvanic isolation. In this paper, a comprehensive literature review is conducted for non-isolated BDCs, covering soft switching, current ripple reduction, high voltage gain and resiliency techniques. Soft switching aims to reduce switching losses and improve efficiency, including auxiliary circuits and non-auxiliary methods, such as interleaved structures, phase-shift modulation, and synchronous rectification. Current ripple reduction focuses on capacitive loop configurations, interleaved structures, and coupled inductor-based methods. Batteries are low-voltage power sources, BDCs can increase the output voltage to a level required by the applications through an appropriate voltage gain, and high voltage gain techniques include capacitor-based, magnetic-based, and combined networks, and mixed structures. Resiliency is explored to ensure reliable operations under adverse conditions. This review provides valuable insights into developing more efficient, reliable, and high-performance BDCs, addressing the evolving demands of modern energy systems. Future research directions in non-isolated BDCs are recommended in this paper.
期刊介绍:
The scope of the IEEE Transactions on Industry Applications includes all scope items of the IEEE Industry Applications Society, that is, the advancement of the theory and practice of electrical and electronic engineering in the development, design, manufacture, and application of electrical systems, apparatus, devices, and controls to the processes and equipment of industry and commerce; the promotion of safe, reliable, and economic installations; industry leadership in energy conservation and environmental, health, and safety issues; the creation of voluntary engineering standards and recommended practices; and the professional development of its membership.