Stability and Reactivity of
TiO
2
n
$$ {\left({\mathrm{TiO}}_2\right)}_n $$
, n = 1–10, Clusters and Their Interactions With
CO
2
$$ {\mathrm{CO}}_2 $$
Letícia Carolaine Silva Faria, Letícia Marques de Souza Vetrano de Queiroz, Murielly Fernanda Ribeiro Bihain, Douglas Henrique Pereira, Leonardo Tsuyoshi Ueno, Francisco Bolivar Correto Machado, Luiz Fernando de Araujo Ferrão
{"title":"Stability and Reactivity of \n \n \n \n \n \n TiO\n 2\n \n \n n\n \n \n $$ {\\left({\\mathrm{TiO}}_2\\right)}_n $$\n , n = 1–10, Clusters and Their Interactions With \n \n \n \n CO\n 2\n \n \n $$ {\\mathrm{CO}}_2 $$","authors":"Letícia Carolaine Silva Faria, Letícia Marques de Souza Vetrano de Queiroz, Murielly Fernanda Ribeiro Bihain, Douglas Henrique Pereira, Leonardo Tsuyoshi Ueno, Francisco Bolivar Correto Machado, Luiz Fernando de Araujo Ferrão","doi":"10.1002/jcc.70232","DOIUrl":null,"url":null,"abstract":"<p>Small titanium dioxide clusters <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mfenced>\n <msub>\n <mi>TiO</mi>\n <mn>2</mn>\n </msub>\n </mfenced>\n <mi>n</mi>\n </msub>\n </mrow>\n <annotation>$$ {\\left({\\mathrm{TiO}}_2\\right)}_n $$</annotation>\n </semantics></math> (with <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 1–10) are promising photocatalysts for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> conversion; however, their size-dependent stability and reactivity are not fully characterized. This study uses density functional theory (M06/def2-TZVP) and global and local reactivity descriptors to identify “magic number” clusters that exhibit high stability. The stability function (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ε</mi>\n <mn>3</mn>\n </msup>\n </mrow>\n <annotation>$$ {\\varepsilon}^3 $$</annotation>\n </semantics></math>), reveals <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 2, 4, and 8 as magic numbers. Electrophilicity analysis (<span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mi>ω</mi>\n </mrow>\n <annotation>$$ \\Delta \\omega $$</annotation>\n </semantics></math>) shows moderate electrophilicity for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 1–5 and strong electrophilicity for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 7–10, while the magic numbers display reduced reactivity. Fukui functions and fractional occupation number-weighted density (<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>N</mi>\n <mi>FOD</mi>\n </msub>\n </mrow>\n <annotation>$$ {N}_{FOD} $$</annotation>\n </semantics></math>) highlight localized reactivity. Notably, they reveal <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 6 to be highly electrophilic, with distinct “hot” electron sites. <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> interaction energies inversely correlate with cluster stability: unstable clusters (<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 3, 5, and 9) strongly bind <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> (up to 0.72 eV), while magic numbers weakly physisorb it (e.g., 0.45 eV for <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation>$$ n $$</annotation>\n </semantics></math> = 8). Non-covalent interaction (NCI) analysis confirms Ti–OCO attraction and C-repulsive sites. Together, these results establish design principles for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>TiO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{TiO}}_2 $$</annotation>\n </semantics></math> cluster catalysts that balance stability with tailored reactivity for <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>CO</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation>$$ {\\mathrm{CO}}_2 $$</annotation>\n </semantics></math> activation.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 25","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcc.70232","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.70232","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Small titanium dioxide clusters (with = 1–10) are promising photocatalysts for conversion; however, their size-dependent stability and reactivity are not fully characterized. This study uses density functional theory (M06/def2-TZVP) and global and local reactivity descriptors to identify “magic number” clusters that exhibit high stability. The stability function (), reveals = 2, 4, and 8 as magic numbers. Electrophilicity analysis () shows moderate electrophilicity for = 1–5 and strong electrophilicity for = 7–10, while the magic numbers display reduced reactivity. Fukui functions and fractional occupation number-weighted density () highlight localized reactivity. Notably, they reveal = 6 to be highly electrophilic, with distinct “hot” electron sites. interaction energies inversely correlate with cluster stability: unstable clusters ( = 3, 5, and 9) strongly bind (up to 0.72 eV), while magic numbers weakly physisorb it (e.g., 0.45 eV for = 8). Non-covalent interaction (NCI) analysis confirms Ti–OCO attraction and C-repulsive sites. Together, these results establish design principles for cluster catalysts that balance stability with tailored reactivity for activation.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.