{"title":"Projection Method for Quasiperiodic Elliptic Equations and Application to Quasiperiodic Homogenization","authors":"Kai Jiang, Meng Li, Juan Zhang, Lei Zhang","doi":"10.1137/24m1697797","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 1962-1985, October 2025. <br/> Abstract. In this study, we address the challenge of solving elliptic equations with quasiperiodic coefficients. To achieve accurate and efficient computation, we introduce the projection method, which enables the embedding of quasiperiodic systems into higher-dimensional periodic systems. To enhance the computational efficiency, we propose a compressed storage strategy for the stiffness matrix by its multilevel block circulant structure, significantly reducing memory requirements. Furthermore, we design a diagonal preconditioner to efficiently solve the resulting high-dimensional linear system by reducing the condition number of the stiffness matrix. These techniques collectively contribute to the computational effectiveness of our proposed approach. Convergence analysis shows the polynomial accuracy of the proposed method. We demonstrate the effectiveness and accuracy of our approach through a series of numerical examples. Moreover, we apply our method to achieve a highly accurate computation of the homogenized coefficients for a quasiperiodic multiscale elliptic equation.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"5 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1697797","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Numerical Analysis, Volume 63, Issue 5, Page 1962-1985, October 2025. Abstract. In this study, we address the challenge of solving elliptic equations with quasiperiodic coefficients. To achieve accurate and efficient computation, we introduce the projection method, which enables the embedding of quasiperiodic systems into higher-dimensional periodic systems. To enhance the computational efficiency, we propose a compressed storage strategy for the stiffness matrix by its multilevel block circulant structure, significantly reducing memory requirements. Furthermore, we design a diagonal preconditioner to efficiently solve the resulting high-dimensional linear system by reducing the condition number of the stiffness matrix. These techniques collectively contribute to the computational effectiveness of our proposed approach. Convergence analysis shows the polynomial accuracy of the proposed method. We demonstrate the effectiveness and accuracy of our approach through a series of numerical examples. Moreover, we apply our method to achieve a highly accurate computation of the homogenized coefficients for a quasiperiodic multiscale elliptic equation.
期刊介绍:
SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.