Mitoepigenetic Targeting of Age-Related Dysfunction: Mechanisms, Therapeutic Avenues, and Transgenerational Implications.

Kit Neikirk, Suraj Thapliyal, Sepiso K Masenga, Ashton Oliver, Margaret Mungai, Han Le, Heather K Beasley, Andrea G Marshall, Anthonya T Cooper, Taneisha Gillyard Cheairs, Benjamin I Rodriguez, Edgar Garza-Lopez, Prasanna Katti, Antentor Hinton
{"title":"Mitoepigenetic Targeting of Age-Related Dysfunction: Mechanisms, Therapeutic Avenues, and Transgenerational Implications.","authors":"Kit Neikirk, Suraj Thapliyal, Sepiso K Masenga, Ashton Oliver, Margaret Mungai, Han Le, Heather K Beasley, Andrea G Marshall, Anthonya T Cooper, Taneisha Gillyard Cheairs, Benjamin I Rodriguez, Edgar Garza-Lopez, Prasanna Katti, Antentor Hinton","doi":"10.4103/agingadv.agingadv-d-25-00006","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondrial epigenetics, a burgeoning field bridging mitochondrial biology and epigenetic regulation, has emerged as a critical determinant of aging and age-related diseases. While nuclear epigenetics is well-characterized, the mechanisms governing mitochondrial DNA (mtDNA) regulation, including nucleoid dynamics, non-coding RNAs (ncRNAs), and metabolite-driven modifications, remain underexplored. This review synthesizes evidence that mitochondrial epigenetics influences cardiovascular pathogenesis through altered DNA methylation and histone acetylation patterns, which dysregulate oxidative phosphorylation and nucleoid stability. In neurodegenerative diseases, endoplasmic reticulum-mitochondrial contact points, disrupted by aging, impair calcium homeostasis and promote neuronal apoptosis, while oxidative stress exacerbates mtDNA instability through inefficient repair mechanisms. Cancer cells exploit mitochondrial metabolic reprogramming, where shifts in acetyl-CoA and α-ketoglutarate levels modulate epigenetic enzymes, fostering drug resistance. Potential therapeutic targets include pharmacological modulation of Mitochondrial transcription factor A acetylation/phosphorylation to enhance mtDNA transcription and dietary interventions to boost NAD+ levels, thereby improving mitochondrial function. Transgenerational studies reveal matrilineal inheritance of mtDNA methylation patterns and stress-induced epigenetic memory, though technical limitations in detecting mtDNA methylation persist. Clinically, mitochondrial epigenetic biomarkers like mtDNA hydroxymethylation and lncRNA expression (e.g., Mitoregulin) show promise for early diagnosis and treatment monitoring. Despite advances, challenges include standardizing methods for mtDNA methylation analysis and translating preclinical findings into therapies. This perspective review underscores the need for integrative approaches combining single-cell sequencing and CRISPR-based technologies to dissect mitochondrial-nuclear crosstalk, ultimately paving the way for precision medicine strategies targeting mitoepigenetic pathways to mitigate age-related decline.</p>","PeriodicalId":520381,"journal":{"name":"Aging advances","volume":"2 3","pages":"108-111"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12442456/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/agingadv.agingadv-d-25-00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mitochondrial epigenetics, a burgeoning field bridging mitochondrial biology and epigenetic regulation, has emerged as a critical determinant of aging and age-related diseases. While nuclear epigenetics is well-characterized, the mechanisms governing mitochondrial DNA (mtDNA) regulation, including nucleoid dynamics, non-coding RNAs (ncRNAs), and metabolite-driven modifications, remain underexplored. This review synthesizes evidence that mitochondrial epigenetics influences cardiovascular pathogenesis through altered DNA methylation and histone acetylation patterns, which dysregulate oxidative phosphorylation and nucleoid stability. In neurodegenerative diseases, endoplasmic reticulum-mitochondrial contact points, disrupted by aging, impair calcium homeostasis and promote neuronal apoptosis, while oxidative stress exacerbates mtDNA instability through inefficient repair mechanisms. Cancer cells exploit mitochondrial metabolic reprogramming, where shifts in acetyl-CoA and α-ketoglutarate levels modulate epigenetic enzymes, fostering drug resistance. Potential therapeutic targets include pharmacological modulation of Mitochondrial transcription factor A acetylation/phosphorylation to enhance mtDNA transcription and dietary interventions to boost NAD+ levels, thereby improving mitochondrial function. Transgenerational studies reveal matrilineal inheritance of mtDNA methylation patterns and stress-induced epigenetic memory, though technical limitations in detecting mtDNA methylation persist. Clinically, mitochondrial epigenetic biomarkers like mtDNA hydroxymethylation and lncRNA expression (e.g., Mitoregulin) show promise for early diagnosis and treatment monitoring. Despite advances, challenges include standardizing methods for mtDNA methylation analysis and translating preclinical findings into therapies. This perspective review underscores the need for integrative approaches combining single-cell sequencing and CRISPR-based technologies to dissect mitochondrial-nuclear crosstalk, ultimately paving the way for precision medicine strategies targeting mitoepigenetic pathways to mitigate age-related decline.

年龄相关功能障碍的有丝分裂表观遗传学靶向:机制、治疗途径和跨代影响。
线粒体表观遗传学是连接线粒体生物学和表观遗传学调控的新兴领域,已成为衰老和年龄相关疾病的关键决定因素。虽然核表观遗传学已经很好地表征了,但线粒体DNA (mtDNA)调控的机制,包括类核动力学、非编码rna (ncRNAs)和代谢物驱动的修饰,仍未得到充分的探索。这篇综述综合了线粒体表观遗传学通过改变DNA甲基化和组蛋白乙酰化模式影响心血管发病机制的证据,这些模式会失调氧化磷酸化和类核稳定性。在神经退行性疾病中,内质网-线粒体接触点因衰老而中断,破坏钙稳态并促进神经元凋亡,而氧化应激通过低效的修复机制加剧mtDNA的不稳定性。癌细胞利用线粒体代谢重编程,其中乙酰辅酶a和α-酮戊二酸水平的变化调节表观遗传酶,促进耐药性。潜在的治疗靶点包括通过药理调节线粒体转录因子A乙酰化/磷酸化来增强mtDNA转录,以及通过饮食干预来提高NAD+水平,从而改善线粒体功能。跨代研究揭示了mtDNA甲基化模式和应激诱导的表观遗传记忆的母系遗传,尽管检测mtDNA甲基化的技术限制仍然存在。临床上,线粒体表观遗传生物标志物如mtDNA羟甲基化和lncRNA表达(如Mitoregulin)显示出早期诊断和治疗监测的希望。尽管取得了进步,但挑战包括mtDNA甲基化分析的标准化方法和将临床前研究结果转化为治疗方法。这一前瞻性综述强调了将单细胞测序和基于crispr的技术相结合的综合方法来解剖线粒体-核串扰的必要性,最终为针对线粒体表观遗传途径的精准医学策略铺平道路,以减轻与年龄相关的衰退。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信