{"title":"Mechanistic insights into RAD51-mediated nucleosome binding and remodeling in homologous recombination","authors":"Takuro Shioi , Suguru Hatazawa , Yoshimasa Takizawa , Hitoshi Kurumizaka","doi":"10.1016/j.dnarep.2025.103891","DOIUrl":null,"url":null,"abstract":"<div><div>Eukaryotic cells organize their genomic DNA into chromatin to achieve both compact packaging and precise regulation of essential processes, including DNA repair. Depending on the type of damage, distinct repair pathways are activated through the targeted recruitment of repair factors to chromatin. RAD51 is the central recombinase in homologous recombination (HR) and forms nucleoprotein filaments, but its mode of chromatin engagement has remained elusive. In this review, we summarize recent progress in the structural and biochemical understanding of DNA repair within chromatin, with a particular focus on RAD51 and its role in HR. Specifically, we review newly determined cryo-electron microscopy (cryo-EM) structures of RAD51 bound to nucleosomes, revealing how RAD51 assembles on chromatin, recognizes DNA damage sites, and remodels nucleosomes into filamentous intermediates. We summarize current insights into how HR-associated proteins regulate RAD51 activity on chromatin, ensuring the fidelity of each step in HR. We conclude by outlining future directions for elucidating the downstream mechanisms of RAD51-mediated HR in the chromatin context.</div></div>","PeriodicalId":300,"journal":{"name":"DNA Repair","volume":"154 ","pages":"Article 103891"},"PeriodicalIF":2.7000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Repair","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568786425000874","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Eukaryotic cells organize their genomic DNA into chromatin to achieve both compact packaging and precise regulation of essential processes, including DNA repair. Depending on the type of damage, distinct repair pathways are activated through the targeted recruitment of repair factors to chromatin. RAD51 is the central recombinase in homologous recombination (HR) and forms nucleoprotein filaments, but its mode of chromatin engagement has remained elusive. In this review, we summarize recent progress in the structural and biochemical understanding of DNA repair within chromatin, with a particular focus on RAD51 and its role in HR. Specifically, we review newly determined cryo-electron microscopy (cryo-EM) structures of RAD51 bound to nucleosomes, revealing how RAD51 assembles on chromatin, recognizes DNA damage sites, and remodels nucleosomes into filamentous intermediates. We summarize current insights into how HR-associated proteins regulate RAD51 activity on chromatin, ensuring the fidelity of each step in HR. We conclude by outlining future directions for elucidating the downstream mechanisms of RAD51-mediated HR in the chromatin context.
期刊介绍:
DNA Repair provides a forum for the comprehensive coverage of DNA repair and cellular responses to DNA damage. The journal publishes original observations on genetic, cellular, biochemical, structural and molecular aspects of DNA repair, mutagenesis, cell cycle regulation, apoptosis and other biological responses in cells exposed to genomic insult, as well as their relationship to human disease.
DNA Repair publishes full-length research articles, brief reports on research, and reviews. The journal welcomes articles describing databases, methods and new technologies supporting research on DNA repair and responses to DNA damage. Letters to the Editor, hot topics and classics in DNA repair, historical reflections, book reviews and meeting reports also will be considered for publication.