Integrating multiple data sources to predict all-cause readmission or mortality in patients with substance misuse.

IF 7.7
PLOS digital health Pub Date : 2025-09-18 eCollection Date: 2025-09-01 DOI:10.1371/journal.pdig.0001008
Tim Gruenloh, Preeti Gupta, Askar Safipour Afshar, Madeline Oguss, Elizabeth Salisbury-Afshar, Marie Pisani, Ryan P Westergaard, Michael Spigner, Megan Gussick, Matthew Churpek, Majid Afshar, Anoop Mayampurath
{"title":"Integrating multiple data sources to predict all-cause readmission or mortality in patients with substance misuse.","authors":"Tim Gruenloh, Preeti Gupta, Askar Safipour Afshar, Madeline Oguss, Elizabeth Salisbury-Afshar, Marie Pisani, Ryan P Westergaard, Michael Spigner, Megan Gussick, Matthew Churpek, Majid Afshar, Anoop Mayampurath","doi":"10.1371/journal.pdig.0001008","DOIUrl":null,"url":null,"abstract":"<p><p>Patients with substance misuse who are admitted to the hospital are at heightened risk for adverse outcomes, such as readmission and death. This study aims to develop methods to identify at-risk patients to facilitate timely interventions that can improve outcomes and optimize healthcare resources. To accomplish this, we leveraged the Substance Misuse Data Commons to predict 30-day death or readmission from hospital discharge in patients with substance misuse. We explored several machine learning algorithms and approaches to integrate information from multiple data sources, such as structured features from a patient's electronic health record (EHR), unstructured clinical notes, socioeconomic data, and emergency medical services (EMS) data. Our gradient-boosted machine model, which combined structured EHR data, socioeconomic status, and EMS data, was the best-performing model (c-statistic 0.746 [95% CI: 0.732-0.759]), outperforming other machine learning methods and structured data source combinations. The addition of unstructured text did not improve performance, suggesting a need for further exploration of how to leverage unstructured data effectively. Feature importance plots highlighted the importance of prior hospital and EMS encounters and discharge disposition in predicting our primary outcome. In conclusion, we integrated multiple data sources that offer complementary information from data sources beyond the typically used EHRs for risk assessment in patients with substance misuse.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"4 9","pages":"e0001008"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445462/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0001008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Patients with substance misuse who are admitted to the hospital are at heightened risk for adverse outcomes, such as readmission and death. This study aims to develop methods to identify at-risk patients to facilitate timely interventions that can improve outcomes and optimize healthcare resources. To accomplish this, we leveraged the Substance Misuse Data Commons to predict 30-day death or readmission from hospital discharge in patients with substance misuse. We explored several machine learning algorithms and approaches to integrate information from multiple data sources, such as structured features from a patient's electronic health record (EHR), unstructured clinical notes, socioeconomic data, and emergency medical services (EMS) data. Our gradient-boosted machine model, which combined structured EHR data, socioeconomic status, and EMS data, was the best-performing model (c-statistic 0.746 [95% CI: 0.732-0.759]), outperforming other machine learning methods and structured data source combinations. The addition of unstructured text did not improve performance, suggesting a need for further exploration of how to leverage unstructured data effectively. Feature importance plots highlighted the importance of prior hospital and EMS encounters and discharge disposition in predicting our primary outcome. In conclusion, we integrated multiple data sources that offer complementary information from data sources beyond the typically used EHRs for risk assessment in patients with substance misuse.

Abstract Image

Abstract Image

Abstract Image

整合多种数据来源预测药物滥用患者的全因再入院或死亡率。
入院的药物滥用患者发生不良后果(如再入院和死亡)的风险更高。本研究旨在开发识别高危患者的方法,以促进及时干预,从而改善预后并优化医疗资源。为了实现这一目标,我们利用物质滥用数据共享来预测药物滥用患者30天内的死亡或出院后再入院。我们探索了几种机器学习算法和方法来整合来自多个数据源的信息,例如来自患者电子健康记录(EHR)的结构化特征、非结构化临床记录、社会经济数据和紧急医疗服务(EMS)数据。我们的梯度增强机器模型结合了结构化EHR数据、社会经济状况和EMS数据,是表现最好的模型(c统计量为0.746 [95% CI: 0.732-0.759]),优于其他机器学习方法和结构化数据源组合。添加非结构化文本并没有提高性能,这表明需要进一步探索如何有效地利用非结构化数据。特征重要性图强调了先前住院和急救经历以及出院处置在预测我们的主要结局中的重要性。总之,我们整合了多个数据源,这些数据源提供了补充信息,而不是通常用于药物滥用患者风险评估的电子病历。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信