Fan Li, Jiaqi Tong, Xi Fang, Chao Cheng, Brennan C Kahan, Bingkai Wang
{"title":"Model-Robust Standardization in Cluster-Randomized Trials.","authors":"Fan Li, Jiaqi Tong, Xi Fang, Chao Cheng, Brennan C Kahan, Bingkai Wang","doi":"10.1002/sim.70270","DOIUrl":null,"url":null,"abstract":"<p><p>In cluster-randomized trials, generalized linear mixed models and generalized estimating equations have conventionally been the default analytic methods for estimating the average treatment effect as routine practice. However, recent studies have demonstrated that their treatment effect coefficient estimators may correspond to ambiguous estimands when the models are misspecified or when there exist informative cluster sizes. In this article, we present a unified approach that standardizes output from a given regression model to ensure estimand-aligned inference for the treatment effect parameters in cluster-randomized trials. We introduce estimators for both the cluster-average and the individual-average treatment effects (marginal estimands) that are always consistent regardless of whether the specified working regression models align with the unknown data generating process. We further explore the use of a deletion-based jackknife variance estimator for inference. The development of our approach also motivates a natural test for informative cluster size. Extensive simulation experiments are designed to demonstrate the advantage of the proposed estimators under a variety of scenarios. The proposed model-robust standardization methods are implemented in the MRStdCRT R package.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 20-22","pages":"e70270"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70270","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In cluster-randomized trials, generalized linear mixed models and generalized estimating equations have conventionally been the default analytic methods for estimating the average treatment effect as routine practice. However, recent studies have demonstrated that their treatment effect coefficient estimators may correspond to ambiguous estimands when the models are misspecified or when there exist informative cluster sizes. In this article, we present a unified approach that standardizes output from a given regression model to ensure estimand-aligned inference for the treatment effect parameters in cluster-randomized trials. We introduce estimators for both the cluster-average and the individual-average treatment effects (marginal estimands) that are always consistent regardless of whether the specified working regression models align with the unknown data generating process. We further explore the use of a deletion-based jackknife variance estimator for inference. The development of our approach also motivates a natural test for informative cluster size. Extensive simulation experiments are designed to demonstrate the advantage of the proposed estimators under a variety of scenarios. The proposed model-robust standardization methods are implemented in the MRStdCRT R package.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.