Michael Santos Silva , Leila S. Coelho-Rato , Navid Delshad , Tatiana Tarkhova , Joakim Edman , Preethy Paul , Annika Meinander , John E. Eriksson
{"title":"Anisomelic acid promotes proteasomal degradation of HPV16 E6 via E3 ligase recruitment: A mass spectrometry-based interactome study","authors":"Michael Santos Silva , Leila S. Coelho-Rato , Navid Delshad , Tatiana Tarkhova , Joakim Edman , Preethy Paul , Annika Meinander , John E. Eriksson","doi":"10.1016/j.jprot.2025.105536","DOIUrl":null,"url":null,"abstract":"<div><div>Human papillomavirus (HPV) is a major driver of cervical and other epithelial cancers, with the viral oncoprotein E6 playing a central role in tumorigenesis by promoting degradation of the tumor suppressor p53. While prophylactic vaccines prevent infection, there remains a critical need for therapeutic strategies that eliminate established HPV-positive cells. Here, we identify anisomelic acid (AA), a natural diterpenoid, as a novel pharmacological principle that selectively induces the degradation of HPV16 E6. Using cellular thermal shift assay, we demonstrate that AA directly interacts with E6, likely triggering a conformational change that promotes its ubiquitination. Proteomic analysis of the E6 interactome in AA-treated cells revealed consistent enrichment of E3 ubiquitin ligases, including E6AP, UBR4, CDC20, and TRIP12, as well as proteasomal subunits. To our knowledge, this represents the first comprehensive proteomics framework of the HPV16 E6 interactome under small-molecule treatment conditions. These findings support a model in which AA facilitates proteasome-mediated elimination of E6, and the dataset itself provides a timely and valuable resource for HPV biology and therapeutic development.</div></div>","PeriodicalId":16891,"journal":{"name":"Journal of proteomics","volume":"322 ","pages":"Article 105536"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of proteomics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874391925001630","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Human papillomavirus (HPV) is a major driver of cervical and other epithelial cancers, with the viral oncoprotein E6 playing a central role in tumorigenesis by promoting degradation of the tumor suppressor p53. While prophylactic vaccines prevent infection, there remains a critical need for therapeutic strategies that eliminate established HPV-positive cells. Here, we identify anisomelic acid (AA), a natural diterpenoid, as a novel pharmacological principle that selectively induces the degradation of HPV16 E6. Using cellular thermal shift assay, we demonstrate that AA directly interacts with E6, likely triggering a conformational change that promotes its ubiquitination. Proteomic analysis of the E6 interactome in AA-treated cells revealed consistent enrichment of E3 ubiquitin ligases, including E6AP, UBR4, CDC20, and TRIP12, as well as proteasomal subunits. To our knowledge, this represents the first comprehensive proteomics framework of the HPV16 E6 interactome under small-molecule treatment conditions. These findings support a model in which AA facilitates proteasome-mediated elimination of E6, and the dataset itself provides a timely and valuable resource for HPV biology and therapeutic development.
期刊介绍:
Journal of Proteomics is aimed at protein scientists and analytical chemists in the field of proteomics, biomarker discovery, protein analytics, plant proteomics, microbial and animal proteomics, human studies, tissue imaging by mass spectrometry, non-conventional and non-model organism proteomics, and protein bioinformatics. The journal welcomes papers in new and upcoming areas such as metabolomics, genomics, systems biology, toxicogenomics, pharmacoproteomics.
Journal of Proteomics unifies both fundamental scientists and clinicians, and includes translational research. Suggestions for reviews, webinars and thematic issues are welcome.