Yuewu Xie, Wenting Zhang, Huilong Wang, Haifeng Hu, Shengpeng Zhang, Shaozhen Wang, Jun Han
{"title":"Application of Physiologically Based Pharmacokinetic Modeling in the Research of Anti-HIV Drugs.","authors":"Yuewu Xie, Wenting Zhang, Huilong Wang, Haifeng Hu, Shengpeng Zhang, Shaozhen Wang, Jun Han","doi":"10.2174/0113892002392579250902053006","DOIUrl":null,"url":null,"abstract":"<p><p>Physiologically based pharmacokinetic (PBPK) modeling is a computational technique that uses the physicochemical properties of drugs and physiological information to simulate plasma and tissue concen-trations. PBPK modeling has become a mainstream approach in drug research and development, frequently employed to support regulatory packages for new drug applications. Understanding the pharmacokinetic char-acteristics of anti-HIV drugs is essential for successful treatment. In recent decades, PBPK modeling has been commonly used in the development and clinical therapy of anti-HIV medications. This review discusses the prevalence and application of PBPK modeling in the pharmacokinetics of anti-HIV drugs. Among the articles retrieved for this review, PBPK modeling was predominantly employed for anti-HIV drugs in contexts, such as pregnancy, drug-drug interactions, and pediatrics. The most commonly used software programs for this model are Simcyp, MATLAB, and PK-sim. This review will provide insights for researchers in applying PBPK models to manage patients with HIV infection, aiming to enhance the efficacy of anti-HIV drug therapy and prevent undesirable adverse effects.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002392579250902053006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Physiologically based pharmacokinetic (PBPK) modeling is a computational technique that uses the physicochemical properties of drugs and physiological information to simulate plasma and tissue concen-trations. PBPK modeling has become a mainstream approach in drug research and development, frequently employed to support regulatory packages for new drug applications. Understanding the pharmacokinetic char-acteristics of anti-HIV drugs is essential for successful treatment. In recent decades, PBPK modeling has been commonly used in the development and clinical therapy of anti-HIV medications. This review discusses the prevalence and application of PBPK modeling in the pharmacokinetics of anti-HIV drugs. Among the articles retrieved for this review, PBPK modeling was predominantly employed for anti-HIV drugs in contexts, such as pregnancy, drug-drug interactions, and pediatrics. The most commonly used software programs for this model are Simcyp, MATLAB, and PK-sim. This review will provide insights for researchers in applying PBPK models to manage patients with HIV infection, aiming to enhance the efficacy of anti-HIV drug therapy and prevent undesirable adverse effects.
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.