Computational refinement and multivalent engineering of complementarity-determining region-grafted nanobodies on a humanized scaffold for retaining antiviral efficacy.
{"title":"Computational refinement and multivalent engineering of complementarity-determining region-grafted nanobodies on a humanized scaffold for retaining antiviral efficacy.","authors":"Liyun Huo, Qin Qin, Tian Tian, Xing Zhang, Xiaoming He, Yuhui Cao, Tianfu Zhang, Yanqin Xu, Qiang Huang","doi":"10.1093/bib/bbaf477","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, nanobody-based therapeutics have emerged as a highly effective strategy for COVID-19 treatment. However, camelid-derived nanobodies often require humanization engineering to reduce immunogenicity in clinical applications while simultaneously preserving their target-binding affinities. Here, we employed a computational and engineering approach to optimize the binding affinities of complementarity-determining region (CDR)-grafted humanized variants of the camelid-derived nanobody Nb2-67, which exhibits potent SARS-CoV-2 neutralization. By grafting the three CDR loops of Nb2-67 onto the humanized scaffold of the approved therapeutic nanobody Caplacizumab and refining the target-binding interface, we generated five nanobody variants with improved computational humanness scores. Three of these variants (Nb491, Nb273, and Nb1052) retained neutralizing activity. To further enhance their potency, we fused these variants to a self-assembling scaffold, generating three multivalent constructs with higher humanness scores. Pseudovirus assays showed that all the trivalent nanobodies exhibited picomolar neutralizing potency comparable to the original trivalent Nb2-67. Our study presents a novel computational and multivalent engineering strategy that effectively restores the antiviral efficacy of humanized CDR-grafted nanobody variants, offering a valuable approach for developing nanobody-based therapeutics against COVID-19 and other diseases.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449085/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf477","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, nanobody-based therapeutics have emerged as a highly effective strategy for COVID-19 treatment. However, camelid-derived nanobodies often require humanization engineering to reduce immunogenicity in clinical applications while simultaneously preserving their target-binding affinities. Here, we employed a computational and engineering approach to optimize the binding affinities of complementarity-determining region (CDR)-grafted humanized variants of the camelid-derived nanobody Nb2-67, which exhibits potent SARS-CoV-2 neutralization. By grafting the three CDR loops of Nb2-67 onto the humanized scaffold of the approved therapeutic nanobody Caplacizumab and refining the target-binding interface, we generated five nanobody variants with improved computational humanness scores. Three of these variants (Nb491, Nb273, and Nb1052) retained neutralizing activity. To further enhance their potency, we fused these variants to a self-assembling scaffold, generating three multivalent constructs with higher humanness scores. Pseudovirus assays showed that all the trivalent nanobodies exhibited picomolar neutralizing potency comparable to the original trivalent Nb2-67. Our study presents a novel computational and multivalent engineering strategy that effectively restores the antiviral efficacy of humanized CDR-grafted nanobody variants, offering a valuable approach for developing nanobody-based therapeutics against COVID-19 and other diseases.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.