Christiane Hartmann, Christina Haß, Muriel Knobloch, Israel Barrantes, Laura Fumagalli, Jessie Premereur, Franz Markert, Maite Peters, Georgia Koromila, Alexander Hartmann, Kathrin Jäger, Jette Abel, Renzo Mancuso, Alexander Storch, Michael Walter, Georg Fuellen, Andreas Hermann
{"title":"Prematurely Aged Human Microglia Exhibit Impaired Stress Response and Defective Nucleocytoplasmic Shuttling of ALS Associated FUS.","authors":"Christiane Hartmann, Christina Haß, Muriel Knobloch, Israel Barrantes, Laura Fumagalli, Jessie Premereur, Franz Markert, Maite Peters, Georgia Koromila, Alexander Hartmann, Kathrin Jäger, Jette Abel, Renzo Mancuso, Alexander Storch, Michael Walter, Georg Fuellen, Andreas Hermann","doi":"10.1111/acel.70232","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia, the brain's resident immune cells, are crucial for maintaining healthy brain homeostasis. However, as the brain ages, microglia can shift from a neuroprotective to a neurotoxic phenotype, contributing to chronic inflammation and promoting neurodegenerative processes. Despite the importance of understanding microglial aging, there are currently few human in vitro models to study these processes. To address this gap, we have developed a model in which human microglia undergo accelerated aging through inducible progerin expression. HMC3-Progerin cells display key age-related markers such as activation of the senescence-associated secretory phenotype (SASP) as well as an increase in DNA damage. These prematurely aged HMC3 cells show a reduced response to LPS activation, exhibit impairments in essential microglial functions including decreased migration and phagocytosis as well as transcriptomic alterations including a shift observed in aging and neurodegeneration. Additionally, we observed an impaired stress response and a defect in nucleocytoplasmic transport, especially affecting the amyotrophic lateral sclerosis (ALS) associated protein FUS. This suggests that microglia play a contributory role in driving neurodegenerative processes in the aging brain. Our microglia aging model offers a valuable tool for exploring how aged microglia affect brain function, enhancing our understanding of their role in brain aging.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e70232"},"PeriodicalIF":7.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.70232","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Microglia, the brain's resident immune cells, are crucial for maintaining healthy brain homeostasis. However, as the brain ages, microglia can shift from a neuroprotective to a neurotoxic phenotype, contributing to chronic inflammation and promoting neurodegenerative processes. Despite the importance of understanding microglial aging, there are currently few human in vitro models to study these processes. To address this gap, we have developed a model in which human microglia undergo accelerated aging through inducible progerin expression. HMC3-Progerin cells display key age-related markers such as activation of the senescence-associated secretory phenotype (SASP) as well as an increase in DNA damage. These prematurely aged HMC3 cells show a reduced response to LPS activation, exhibit impairments in essential microglial functions including decreased migration and phagocytosis as well as transcriptomic alterations including a shift observed in aging and neurodegeneration. Additionally, we observed an impaired stress response and a defect in nucleocytoplasmic transport, especially affecting the amyotrophic lateral sclerosis (ALS) associated protein FUS. This suggests that microglia play a contributory role in driving neurodegenerative processes in the aging brain. Our microglia aging model offers a valuable tool for exploring how aged microglia affect brain function, enhancing our understanding of their role in brain aging.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.