Optimized 3'-Phosphoadenosine-5'-phosphosulfate Biosynthesis via Yeast-Powered ATP Regeneration and Biotin-Streptavidin Enzyme Immobilization.

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xin-Yu Li, Jian-Qun Deng, Yu-Han Zhao, Ya-Lin Cao, Yi Li, Jin Hou, Xue-Ping Guo, Ju-Zheng Sheng
{"title":"Optimized 3'-Phosphoadenosine-5'-phosphosulfate Biosynthesis via Yeast-Powered ATP Regeneration and Biotin-Streptavidin Enzyme Immobilization.","authors":"Xin-Yu Li, Jian-Qun Deng, Yu-Han Zhao, Ya-Lin Cao, Yi Li, Jin Hou, Xue-Ping Guo, Ju-Zheng Sheng","doi":"10.1021/acs.biochem.5c00373","DOIUrl":null,"url":null,"abstract":"<p><p>3'-Phosphoadenosine-5'-phosphosulfate (PAPS), a universal sulfate donor for sulfation reactions, is indispensable for synthesizing bioactive molecules including therapeutic glycosaminoglycans and sulfolipids; however, its enzymatic production on an industrial scale is constrained by ATP overconsumption and the limited free enzyme reusability. We report an integrated biocatalytic platform combining ATP regeneration with affinity immobilization to enable sustainable PAPS biosynthesis. A polyphosphate kinase-driven ATP regeneration system achieved 86% PAPS conversion efficiency by regenerating ADP using low-cost polyphosphate. Biotin-streptavidin affinity immobilization enhanced operational stability, retaining >50% activity over six reuse cycles with a cumulative PAPS titer of 12.02 g/L. Coupling adenosine-converting <i>Saccharomyces cerevisiae</i> whole-cell catalysts with this system decreased substrate costs by 80.7% and delivered 96% molar PAPS yield from adenosine. This work provides a sustainable platform for industrial PAPS biosynthesis to promote sulfated biomolecule production, including glycosaminoglycans and other therapeutics.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00373","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

3'-Phosphoadenosine-5'-phosphosulfate (PAPS), a universal sulfate donor for sulfation reactions, is indispensable for synthesizing bioactive molecules including therapeutic glycosaminoglycans and sulfolipids; however, its enzymatic production on an industrial scale is constrained by ATP overconsumption and the limited free enzyme reusability. We report an integrated biocatalytic platform combining ATP regeneration with affinity immobilization to enable sustainable PAPS biosynthesis. A polyphosphate kinase-driven ATP regeneration system achieved 86% PAPS conversion efficiency by regenerating ADP using low-cost polyphosphate. Biotin-streptavidin affinity immobilization enhanced operational stability, retaining >50% activity over six reuse cycles with a cumulative PAPS titer of 12.02 g/L. Coupling adenosine-converting Saccharomyces cerevisiae whole-cell catalysts with this system decreased substrate costs by 80.7% and delivered 96% molar PAPS yield from adenosine. This work provides a sustainable platform for industrial PAPS biosynthesis to promote sulfated biomolecule production, including glycosaminoglycans and other therapeutics.

酵母驱动ATP再生和生物素-链亲和素酶固定化优化3'-磷酸腺苷-5'-硫酸磷酸生物合成。
3′-磷酸腺苷-5′-磷酸硫酸酯(PAPS)是磺化反应的普遍硫酸供体,是合成治疗性糖胺聚糖和磺化脂类等生物活性分子不可或缺的物质;然而,在工业规模上,它的酶生产受到ATP过度消耗和有限的游离酶可重用性的限制。我们报道了一个集成的生物催化平台,结合ATP再生和亲和固定,以实现可持续的PAPS生物合成。利用低成本的聚磷酸盐再生ADP,一种多磷酸激酶驱动的ATP再生系统实现了86%的PAPS转化效率。生物素-链亲和素亲和固定提高了操作稳定性,在6个重复使用周期内保持了50%的活性,累积PAPS滴度为12.02 g/L。将腺苷转化酿酒酵母全细胞催化剂与该体系偶联,使底物成本降低80.7%,腺苷的摩尔PAPS产率达到96%。这项工作为工业PAPS生物合成提供了一个可持续的平台,以促进硫酸生物分子的生产,包括糖胺聚糖和其他治疗药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信