Photo-responsive Fe single-atom dispersed FeNC-C3N4 electrocatalysts with Schottky heterojunction for photo-enhanced zinc-air batteries.

IF 9.7 1区 化学 Q1 CHEMISTRY, PHYSICAL
Journal of Colloid and Interface Science Pub Date : 2026-01-15 Epub Date: 2025-09-08 DOI:10.1016/j.jcis.2025.138982
Yang Zhang, Xiaoqian Xu, Yi Yang, Xi Luo, Kai Yang, Momo Safari, Haitao Huang, Jinli Qiao
{"title":"Photo-responsive Fe single-atom dispersed FeNC-C<sub>3</sub>N<sub>4</sub> electrocatalysts with Schottky heterojunction for photo-enhanced zinc-air batteries.","authors":"Yang Zhang, Xiaoqian Xu, Yi Yang, Xi Luo, Kai Yang, Momo Safari, Haitao Huang, Jinli Qiao","doi":"10.1016/j.jcis.2025.138982","DOIUrl":null,"url":null,"abstract":"<p><p>Directly integrating solar energy into zinc-air batteries (ZABs) systems represents an eco-friendly, efficient and low-cost strategy, yet the rational design of photo-enhanced ZABs for high-performance solar energy utilization continues to pose a significant scientific challenge. Herein, the FeNC-C<sub>3</sub>N<sub>4</sub> photo-electrocatalyst with Schottky heterojunction is fabricated through a facile \"ball-milling and spray-coating\" approach, which effectively integrates FeNC with graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>). Among them, g-C<sub>3</sub>N<sub>4</sub> functions as a photoactive catalytic material, whereas FeNC serves as an efficient electroactive layer that promotes interfacial electron transfer from g-C<sub>3</sub>N<sub>4</sub> under illumination, thereby improving the spatial separation of photogenerated carriers and extending their lifetime. Remarkably, in comparison with FeNC-based ZABs (370.53 mWcm<sup>-2</sup> and 228 h), FeNC-C<sub>3</sub>N<sub>4</sub>-based ZABs demonstrate a record-high power density of 540.58 mW cm<sup>-2</sup> under illumination, along with stable charge-discharge cycling over 1028 h at 10 mA cm<sup>-2</sup>, representing the highest performance reported to date for photo-enhanced ZABs (PZABs). More importantly, when operated at 10 mA cm<sup>-2</sup> under illumination, the g-C<sub>3</sub>N<sub>4</sub>-modified FeNC-C<sub>3</sub>N<sub>4</sub>-based PZABs achieve a significantly reduced charging voltage of ∼1.94 V, in stark contrast to the conventional FeNC-based ZABs (∼2.09 V), corresponding to a notable voltage reduction of ∼0.15 V. This work offers a straightforward strategy for developing photo-enhanced ZABs that efficiently harness solar energy to reduce the charging voltage of conventional ZABs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"702 Pt 2","pages":"138982"},"PeriodicalIF":9.7000,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2025.138982","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Directly integrating solar energy into zinc-air batteries (ZABs) systems represents an eco-friendly, efficient and low-cost strategy, yet the rational design of photo-enhanced ZABs for high-performance solar energy utilization continues to pose a significant scientific challenge. Herein, the FeNC-C3N4 photo-electrocatalyst with Schottky heterojunction is fabricated through a facile "ball-milling and spray-coating" approach, which effectively integrates FeNC with graphitic carbon nitride (g-C3N4). Among them, g-C3N4 functions as a photoactive catalytic material, whereas FeNC serves as an efficient electroactive layer that promotes interfacial electron transfer from g-C3N4 under illumination, thereby improving the spatial separation of photogenerated carriers and extending their lifetime. Remarkably, in comparison with FeNC-based ZABs (370.53 mWcm-2 and 228 h), FeNC-C3N4-based ZABs demonstrate a record-high power density of 540.58 mW cm-2 under illumination, along with stable charge-discharge cycling over 1028 h at 10 mA cm-2, representing the highest performance reported to date for photo-enhanced ZABs (PZABs). More importantly, when operated at 10 mA cm-2 under illumination, the g-C3N4-modified FeNC-C3N4-based PZABs achieve a significantly reduced charging voltage of ∼1.94 V, in stark contrast to the conventional FeNC-based ZABs (∼2.09 V), corresponding to a notable voltage reduction of ∼0.15 V. This work offers a straightforward strategy for developing photo-enhanced ZABs that efficiently harness solar energy to reduce the charging voltage of conventional ZABs.

具有Schottky异质结的光响应Fe单原子分散fen - c3n4电催化剂用于光增强锌空气电池。
将太阳能直接集成到锌空气电池(ZABs)系统中是一种环保、高效和低成本的策略,但合理设计用于高性能太阳能利用的光增强ZABs仍然是一个重大的科学挑战。本文通过简单的“球磨和喷涂”方法制备了具有Schottky异质结的fen - c3n4光电催化剂,有效地将fen - c3n4与石墨化氮化碳(g-C3N4)结合在一起。其中,g-C3N4作为光活性催化材料,而FeNC作为高效电活性层,促进g-C3N4在光照下的界面电子转移,从而改善光生载流子的空间分离,延长其寿命。值得注意的是,与基于fencc3n4的ZABs (370.53 mWcm-2和228 h)相比,基于fencc3n4的ZABs在光照下表现出创纪录的高功率密度540.58 mWcm-2,以及在10 mA cm-2下1028 h的稳定充放电循环,代表了迄今为止报道的光增强ZABs (PZABs)的最高性能。更重要的是,当在10 mA cm-2的光照下工作时,g- c3n4修饰的基于fencc3n4的PZABs的充电电压显著降低了~ 1.94 V,与传统的基于fenczabs (~ 2.09 V)形成鲜明对比,相当于显著降低了~ 0.15 V的电压。这项工作为开发光增强ZABs提供了一种直接的策略,该策略可以有效地利用太阳能来降低传统ZABs的充电电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信