Cosmology with persistent homology: parameter inference via machine learning

IF 5.9 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Juan Calles, Jacky H.T. Yip, Gabriella Contardo, Jorge Noreña, Adam Rouhiainen, Gary Shiu
{"title":"Cosmology with persistent homology: parameter inference via machine learning","authors":"Juan Calles, Jacky H.T. Yip, Gabriella Contardo, Jorge Noreña, Adam Rouhiainen, Gary Shiu","doi":"10.1088/1475-7516/2025/09/064","DOIUrl":null,"url":null,"abstract":"Building upon previous work [1], we investigate the constraining power of persistent homology on cosmological parameters and primordial non-Gaussianity in a likelihood-free inference pipeline utilizing machine learning. We evaluate the ability of Persistence Images (PIs) to infer parameters, comparing them to the combined Power Spectrum and Bispectrum (PS/BS). We also compare two classes of models: neural-based and tree-based. PIs consistently lead to better predictions compared to the combined PS/BS for parameters that can be constrained, i.e., for {Ω<sub>m</sub>, <italic toggle=\"yes\">σ</italic>\n<sub>8</sub>, <italic toggle=\"yes\">n</italic>\n<sub>s</sub>, <italic toggle=\"yes\">f</italic>\n<sub>NL</sub>\n<sup>loc</sup>}. PIs perform particularly well for <italic toggle=\"yes\">f</italic>\n<sub>NL</sub>\n<sup>loc</sup>, highlighting the potential of persistent homology for constraining primordial non-Gaussianity. Our results indicate that combining PIs with PS/BS provides only marginal gains, indicating that the PS/BS contains little additional or complementary information to the PIs. Finally, we provide a visualization of the most important topological features for <italic toggle=\"yes\">f</italic>\n<sub>NL</sub>\n<sup>loc</sup> and for Ω<sub>m</sub>. This reveals that clusters and voids (0-cycles and 2-cycles) are most informative for Ω<sub>m</sub>, while <italic toggle=\"yes\">f</italic>\n<sub>NL</sub>\n<sup>loc</sup> is additionally informed by filaments (1-cycles).","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"38 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/09/064","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Building upon previous work [1], we investigate the constraining power of persistent homology on cosmological parameters and primordial non-Gaussianity in a likelihood-free inference pipeline utilizing machine learning. We evaluate the ability of Persistence Images (PIs) to infer parameters, comparing them to the combined Power Spectrum and Bispectrum (PS/BS). We also compare two classes of models: neural-based and tree-based. PIs consistently lead to better predictions compared to the combined PS/BS for parameters that can be constrained, i.e., for {Ωm, σ 8, n s, f NL loc}. PIs perform particularly well for f NL loc, highlighting the potential of persistent homology for constraining primordial non-Gaussianity. Our results indicate that combining PIs with PS/BS provides only marginal gains, indicating that the PS/BS contains little additional or complementary information to the PIs. Finally, we provide a visualization of the most important topological features for f NL loc and for Ωm. This reveals that clusters and voids (0-cycles and 2-cycles) are most informative for Ωm, while f NL loc is additionally informed by filaments (1-cycles).
具有持久同调的宇宙学:通过机器学习的参数推理
在前人工作[1]的基础上,我们利用机器学习研究了无似然推理管道中宇宙学参数和原初非高斯性的持续同源性的约束能力。我们评估了持久性图像(pi)推断参数的能力,并将其与组合功率谱和双谱(PS/BS)进行了比较。我们还比较了两类模型:基于神经的和基于树的。对于可以约束的参数,即{Ωm, σ8, ns, fnloc},与PS/BS组合相比,pi始终导致更好的预测。pi在fnloc中表现得特别好,突出了约束原始非高斯性的持久同源性的潜力。我们的研究结果表明,将pi与PS/BS结合只提供了边际收益,这表明PS/BS对pi包含的额外或补充信息很少。最后,我们提供了fnloc和Ωm最重要的拓扑特征的可视化。这表明簇和空洞(0周期和2周期)对Ωm的信息最多,而fnloc则由细丝(1周期)提供额外信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信