Noninvasive Modulation of In-Plane Optical Anisotropy in ReSe2 via Etching-Induced Strain

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
Xiang Li, , , Yang Zhang*, , , Zhihao Zhang, , , Lingxiu Chen, , , Xiaolan Xue, , , Chuanlei Jia, , , Yu Yue, , and , Liwei Shi*, 
{"title":"Noninvasive Modulation of In-Plane Optical Anisotropy in ReSe2 via Etching-Induced Strain","authors":"Xiang Li,&nbsp;, ,&nbsp;Yang Zhang*,&nbsp;, ,&nbsp;Zhihao Zhang,&nbsp;, ,&nbsp;Lingxiu Chen,&nbsp;, ,&nbsp;Xiaolan Xue,&nbsp;, ,&nbsp;Chuanlei Jia,&nbsp;, ,&nbsp;Yu Yue,&nbsp;, and ,&nbsp;Liwei Shi*,&nbsp;","doi":"10.1021/acs.jpcc.5c06068","DOIUrl":null,"url":null,"abstract":"<p >The modulation of in-plane optical anisotropy in two-dimensional (2D) materials is of great significance for both fundamental research and optoelectronic device engineering. Here, we present a nondestructive and spatially tunable approach to control the anisotropic optical response of ReSe<sub>2</sub> through substrate etching–induced dielectric perturbations. Using a customized reflection difference spectroscopy (RDS) imaging system, we noninvasively characterized ReSe<sub>2</sub> flakes transferred onto both etched and pristine regions of patterned SiO<sub>2</sub> substrates. The etching process generates localized stress fields that weaken the intrinsic in-plane anisotropy of ReSe<sub>2</sub>, enhance its overall reflectance, and induce a slight rotation of its optical principal axis. These effects are attributed to strain-driven modifications of the dielectric environment, which alter the optical response without compromising the structural integrity of the flakes. Our findings demonstrate that substrate-induced strain provides an effective means for controllable, localized, and nondestructive modulation of optical anisotropy in 2D semiconductors. This work establishes a practical strategy for tailoring the anisotropic optical properties of layered materials, offering potential implications for the design of strain-engineered optoelectronic devices and polarization-sensitive applications.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 39","pages":"17669–17675"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.5c06068","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The modulation of in-plane optical anisotropy in two-dimensional (2D) materials is of great significance for both fundamental research and optoelectronic device engineering. Here, we present a nondestructive and spatially tunable approach to control the anisotropic optical response of ReSe2 through substrate etching–induced dielectric perturbations. Using a customized reflection difference spectroscopy (RDS) imaging system, we noninvasively characterized ReSe2 flakes transferred onto both etched and pristine regions of patterned SiO2 substrates. The etching process generates localized stress fields that weaken the intrinsic in-plane anisotropy of ReSe2, enhance its overall reflectance, and induce a slight rotation of its optical principal axis. These effects are attributed to strain-driven modifications of the dielectric environment, which alter the optical response without compromising the structural integrity of the flakes. Our findings demonstrate that substrate-induced strain provides an effective means for controllable, localized, and nondestructive modulation of optical anisotropy in 2D semiconductors. This work establishes a practical strategy for tailoring the anisotropic optical properties of layered materials, offering potential implications for the design of strain-engineered optoelectronic devices and polarization-sensitive applications.

Abstract Image

Abstract Image

蚀刻诱导应变对ReSe2平面内光学各向异性的无创调制
二维材料的面内光学各向异性调制在基础研究和光电子器件工程中具有重要意义。在这里,我们提出了一种非破坏性和空间可调的方法,通过衬底蚀刻引起的介电扰动来控制ReSe2的各向异性光学响应。使用定制的反射差分光谱(RDS)成像系统,我们无创地表征了转移到蚀刻和原始区域的ReSe2薄片。蚀刻过程产生局部应力场,削弱了ReSe2的面内各向异性,增强了其整体反射率,并引起其光主轴的轻微旋转。这些效应归因于电介质环境的应变驱动修改,这改变了光学响应而不损害薄片的结构完整性。我们的研究结果表明,衬底诱导应变为二维半导体光学各向异性的可控、局部和非破坏性调制提供了一种有效手段。这项工作建立了一种实用的策略来剪裁层状材料的各向异性光学特性,为应变工程光电器件的设计和偏振敏感应用提供了潜在的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信