Tijana Ljubikj,Mayte Z Mars,Astrid T van der Geest,Channa E Jakobs,Nils Bessler,Vanessa Donega,Xynthia P R M van den Oetelaar,Marina de Wit,R Jeroen Pasterkamp
{"title":"PU.1 restores microglial dysfunction caused by C9ORF72 repeat expansions in neural organoids.","authors":"Tijana Ljubikj,Mayte Z Mars,Astrid T van der Geest,Channa E Jakobs,Nils Bessler,Vanessa Donega,Xynthia P R M van den Oetelaar,Marina de Wit,R Jeroen Pasterkamp","doi":"10.1093/brain/awaf340","DOIUrl":null,"url":null,"abstract":"Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by loss of upper and lower motor neurons and progressive muscle wasting. Accumulating evidence indicates a role for non-neuronal cells in ALS pathogenesis, but their exact role and mechanism-of-action remain incompletely understood. A hexanucleotide (GGGGCC) repeat expansion (HRE) in C9ORF72 is the most common genetic cause of ALS (C9-ALS) and a frequent cause of frontotemporal dementia (FTD). Several lines of experimental evidence support a role for the immune system and microglia in C9-ALS/FTD, and, depending on experimental settings and species used, both reduced and increased microglial activity have been reported. To further study microglia in C9-ALS/FTD in the context of a complex, three-dimensional disease environment, we developed cerebral organoids that innately develop microglia derived from induced pluripotent stem cells (iPSCs) of C9-ALS/FTD patients and controls. Here we show reduced cellular complexity and transcriptional changes in C9 neural organoid-derived microglia (C9-oMGs), involving phagocytic, lysosomal and immune response pathways. The release of inflammatory cues from C9-ALS/FTD organoids is decreased and LAMP1 expression in C9-oMGs is reduced. Functional analysis using live imaging reveals impaired phagocytosis by C9-oMGs and reduced engulfment of the post-synaptic protein PSD-95 by C9-oMGs in organoids. Finally, our transcriptomics analysis identifies a PU.1 (encoded by SPI1) regulon as the most strongly downregulated transcription factor network in C9-oMGs. Viral overexpression of PU.1 rescues phagocytosis and gene expression defects in C9-microglia. Overall, our data demonstrate reduced microglial functions in a complex cellular disease environment and identify PU.1 as a potential target for restoring microglia changes in C9-ALS/FTD.","PeriodicalId":9063,"journal":{"name":"Brain","volume":"79 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/brain/awaf340","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by loss of upper and lower motor neurons and progressive muscle wasting. Accumulating evidence indicates a role for non-neuronal cells in ALS pathogenesis, but their exact role and mechanism-of-action remain incompletely understood. A hexanucleotide (GGGGCC) repeat expansion (HRE) in C9ORF72 is the most common genetic cause of ALS (C9-ALS) and a frequent cause of frontotemporal dementia (FTD). Several lines of experimental evidence support a role for the immune system and microglia in C9-ALS/FTD, and, depending on experimental settings and species used, both reduced and increased microglial activity have been reported. To further study microglia in C9-ALS/FTD in the context of a complex, three-dimensional disease environment, we developed cerebral organoids that innately develop microglia derived from induced pluripotent stem cells (iPSCs) of C9-ALS/FTD patients and controls. Here we show reduced cellular complexity and transcriptional changes in C9 neural organoid-derived microglia (C9-oMGs), involving phagocytic, lysosomal and immune response pathways. The release of inflammatory cues from C9-ALS/FTD organoids is decreased and LAMP1 expression in C9-oMGs is reduced. Functional analysis using live imaging reveals impaired phagocytosis by C9-oMGs and reduced engulfment of the post-synaptic protein PSD-95 by C9-oMGs in organoids. Finally, our transcriptomics analysis identifies a PU.1 (encoded by SPI1) regulon as the most strongly downregulated transcription factor network in C9-oMGs. Viral overexpression of PU.1 rescues phagocytosis and gene expression defects in C9-microglia. Overall, our data demonstrate reduced microglial functions in a complex cellular disease environment and identify PU.1 as a potential target for restoring microglia changes in C9-ALS/FTD.
期刊介绍:
Brain, a journal focused on clinical neurology and translational neuroscience, has been publishing landmark papers since 1878. The journal aims to expand its scope by including studies that shed light on disease mechanisms and conducting innovative clinical trials for brain disorders. With a wide range of topics covered, the Editorial Board represents the international readership and diverse coverage of the journal. Accepted articles are promptly posted online, typically within a few weeks of acceptance. As of 2022, Brain holds an impressive impact factor of 14.5, according to the Journal Citation Reports.