Ion-Dipole Interaction Induced Rigid-Flexible Coupling SEI for Ultrastable Sodium Storage of Microsized Sn Anode.

IF 16.9
Mingyue Li, Simi Sui, Xunzhu Zhou, Shenxu Chu, Qian Yang, Genliang Yu, Xuejie Bai, Tongtong Huo, Kai Liu, Jie Xu, Ting Lv, Xiaobo Zhang, Lin Li, Kaixiang Lei, Shijian Zheng
{"title":"Ion-Dipole Interaction Induced Rigid-Flexible Coupling SEI for Ultrastable Sodium Storage of Microsized Sn Anode.","authors":"Mingyue Li, Simi Sui, Xunzhu Zhou, Shenxu Chu, Qian Yang, Genliang Yu, Xuejie Bai, Tongtong Huo, Kai Liu, Jie Xu, Ting Lv, Xiaobo Zhang, Lin Li, Kaixiang Lei, Shijian Zheng","doi":"10.1002/anie.202515062","DOIUrl":null,"url":null,"abstract":"<p><p>Tin (Sn) anode has been considered as a promising candidate for sodium-ion batteries due to its high theoretical capacity and suitable operating potential. However, they suffer from substantial volume variation during charge/discharge processes, which leads to fast capacity degradation. Herein, we propose a strategy combining solvents with different solvation abilities to regulate ion-dipole interactions, establishing an anion and solvent co-dominated solvation chemistry. This unique solvation chemistry triggers the cooperative decomposition of anions and solvents, generating a mechanically robust yet chemically stable organic-inorganic hybrid solid-electrolyte interphase (SEI) with balanced rigidity and flexibility. The stable SEI effectively mitigates volume variation during charge/discharge processes and suppresses successive electrolyte decomposition. Therefore, the microsized Sn anode exhibits superior cycling stability (high capacity retention of 83.31% after 1000 cycles) and rate performance (270.4 mAh g<sup>-1</sup> at 4.0 A g<sup>-1</sup>). More importantly, the Sn||Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> full cell achieves a remarkable energy density of 235.3 Wh kg<sup>-1</sup>. This study demonstrates the feasibility of rigid-flexible coupling SEI, providing a pathway to boost the sodium storage performance of anode materials with huge volume change.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202515062"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202515062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tin (Sn) anode has been considered as a promising candidate for sodium-ion batteries due to its high theoretical capacity and suitable operating potential. However, they suffer from substantial volume variation during charge/discharge processes, which leads to fast capacity degradation. Herein, we propose a strategy combining solvents with different solvation abilities to regulate ion-dipole interactions, establishing an anion and solvent co-dominated solvation chemistry. This unique solvation chemistry triggers the cooperative decomposition of anions and solvents, generating a mechanically robust yet chemically stable organic-inorganic hybrid solid-electrolyte interphase (SEI) with balanced rigidity and flexibility. The stable SEI effectively mitigates volume variation during charge/discharge processes and suppresses successive electrolyte decomposition. Therefore, the microsized Sn anode exhibits superior cycling stability (high capacity retention of 83.31% after 1000 cycles) and rate performance (270.4 mAh g-1 at 4.0 A g-1). More importantly, the Sn||Na3V2(PO4)3 full cell achieves a remarkable energy density of 235.3 Wh kg-1. This study demonstrates the feasibility of rigid-flexible coupling SEI, providing a pathway to boost the sodium storage performance of anode materials with huge volume change.

Abstract Image

离子偶极相互作用诱导的刚柔耦合SEI用于微尺寸锡阳极的超稳定钠存储。
锡阳极由于具有较高的理论容量和合适的工作电位而被认为是钠离子电池的理想阳极。然而,在充放电过程中,它们的体积变化很大,导致容量快速下降。在此,我们提出了一种策略,结合不同溶剂化能力的溶剂来调节离子偶极子相互作用,建立阴离子和溶剂共同主导的溶剂化化学。这种独特的溶剂化化学反应触发了阴离子和溶剂的协同分解,产生了一种机械坚固但化学稳定的有机-无机混合固体电解质界面(SEI),具有平衡的刚性和柔韧性。稳定的SEI有效地减轻了充放电过程中的体积变化,抑制了连续的电解质分解。因此,微尺寸的锡阳极表现出优异的循环稳定性(1000次循环后的高容量保持率为83.31%)和倍率性能(在4.0 A g-1时为270.4 mAh g-1)。更重要的是,Sn||Na3V2(PO4)3充满电池的能量密度达到了235.3 Wh kg-1。本研究证明了刚柔耦合SEI的可行性,为提高大体积变化阳极材料的储钠性能提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信