Protein Cage Inspired Bridge-Island Effect Enables Low-Temperature Targeted Self-Assembly of Hierarchical Hollow Polyanionic Cathodes for Sodium-Ion Batteries.

IF 16.9
Shuqiang Li, Xueying Lu, Yu Li, Yuteng Gong, Qiannan Zhou, Huaizhi Wang, Feng Wu, Chuan Wu, Ying Bai
{"title":"Protein Cage Inspired Bridge-Island Effect Enables Low-Temperature Targeted Self-Assembly of Hierarchical Hollow Polyanionic Cathodes for Sodium-Ion Batteries.","authors":"Shuqiang Li, Xueying Lu, Yu Li, Yuteng Gong, Qiannan Zhou, Huaizhi Wang, Feng Wu, Chuan Wu, Ying Bai","doi":"10.1002/anie.202511732","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving targeted morphological control over polyanionic cathodes under mild conditions remains a critical challenge. Drawing inspiration from the self-assembly of protein cages, we propose an ionic weaving strategy for the low-temperature fabrication of hierarchical hollow Na<sub>3</sub>V<sub>2</sub>O<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F (NVOPF) cathodes. By introducing low-cost monosodium glutamate as a template precursor, the derived glutamate species self-assemble into hollow micellar soft templates under the coordination bridging of VO<sup>2+</sup> ions. Subsequently, PO<sub>4</sub> <sup>3-</sup>, Na<sup>+</sup>, and F<sup>-</sup> ions are electrostatically attracted to VO<sup>2+</sup>-anchored microdomains, triggering island-like nucleation. The VO<sup>2+</sup>-mediated bridge-island effect facilitates both the construction of microscale hollow soft templates and the localized nucleation of nanocrystals, thereby enabling micro/nano hierarchical hollow morphology control of NVOPF under mild conditions. Moreover, the self-assembly mechanism underlying hollow soft template formation is systematically elucidated for the first time through a combination of soft matter probing techniques, including fluorescence microscopy and negative staining, supported by density functional theory calculations and all-atom molecular dynamics simulations. The resulting NVOPF-based cathode exhibits ultra-stable high-rate cycling and excellent low-temperature durability. This work establishes a new paradigm that integrates supramolecular self-assembly with metal-ion coordination chemistry for the rational design of fast-charging polyanionic cathode materials.</p>","PeriodicalId":520556,"journal":{"name":"Angewandte Chemie (International ed. in English)","volume":" ","pages":"e202511732"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie (International ed. in English)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/anie.202511732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving targeted morphological control over polyanionic cathodes under mild conditions remains a critical challenge. Drawing inspiration from the self-assembly of protein cages, we propose an ionic weaving strategy for the low-temperature fabrication of hierarchical hollow Na3V2O2(PO4)2F (NVOPF) cathodes. By introducing low-cost monosodium glutamate as a template precursor, the derived glutamate species self-assemble into hollow micellar soft templates under the coordination bridging of VO2+ ions. Subsequently, PO4 3-, Na+, and F- ions are electrostatically attracted to VO2+-anchored microdomains, triggering island-like nucleation. The VO2+-mediated bridge-island effect facilitates both the construction of microscale hollow soft templates and the localized nucleation of nanocrystals, thereby enabling micro/nano hierarchical hollow morphology control of NVOPF under mild conditions. Moreover, the self-assembly mechanism underlying hollow soft template formation is systematically elucidated for the first time through a combination of soft matter probing techniques, including fluorescence microscopy and negative staining, supported by density functional theory calculations and all-atom molecular dynamics simulations. The resulting NVOPF-based cathode exhibits ultra-stable high-rate cycling and excellent low-temperature durability. This work establishes a new paradigm that integrates supramolecular self-assembly with metal-ion coordination chemistry for the rational design of fast-charging polyanionic cathode materials.

Abstract Image

蛋白质笼启发的桥岛效应实现了钠离子电池分层中空聚阴离子阴极的低温定向自组装。
在温和条件下实现对聚阴离子阴极的定向形态控制仍然是一个关键的挑战。从蛋白质笼的自组装中获得灵感,我们提出了一种离子编织策略,用于低温制备分层中空Na3V2O2(PO4)2F (NVOPF)阴极。通过引入低成本的谷氨酸钠作为模板前体,衍生的谷氨酸在VO2+离子的配位桥接下自组装成空心胶束软模板。随后,po43 -、Na+和F-离子被静电吸引到VO2+锚定的微畴上,触发岛状成核。VO2+介导的桥岛效应促进了微尺度中空软模板的构建和纳米晶体的局域成核,从而在温和条件下实现了NVOPF的微纳分层中空形貌控制。此外,通过结合软物质探测技术,包括荧光显微镜和阴性染色,在密度泛函理论计算和全原子分子动力学模拟的支持下,首次系统地阐明了空心软模板形成的自组装机制。由此产生的基于nvopf的阴极具有超稳定的高倍率循环和优异的低温耐久性。本研究为快速充电聚阴离子正极材料的合理设计建立了一种将超分子自组装与金属离子配位化学相结合的新范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信