Explainable AI for Accelerated Microstructure Imaging: A SHAP-Guided Protocol on the Connectome 2.0 scanner.

ArXiv Pub Date : 2025-09-11
Quentin Uhl, Tommaso Pavan, Julianna Gerold, Kwok-Shing Chan, Yohan Jun, Shohei Fujita, Aneri Bhatt, Yixin Ma, Qiaochu Wang, Hong-Hsi Lee, Susie Y Huang, Berkin Bilgic, Ileana Jelescu
{"title":"Explainable AI for Accelerated Microstructure Imaging: A SHAP-Guided Protocol on the Connectome 2.0 scanner.","authors":"Quentin Uhl, Tommaso Pavan, Julianna Gerold, Kwok-Shing Chan, Yohan Jun, Shohei Fujita, Aneri Bhatt, Yixin Ma, Qiaochu Wang, Hong-Hsi Lee, Susie Y Huang, Berkin Bilgic, Ileana Jelescu","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The diffusion MRI Neurite Exchange Imaging model offers a promising framework for probing gray matter microstructure by estimating parameters such as compartment sizes, diffusivities, and inter-compartmental water exchange time. However, existing protocols require long scan times. This study proposes a reduced acquisition scheme for the Connectome 2.0 scanner that preserves model accuracy while substantially shortening scan duration. We developed a data-driven framework using explainable artificial intelligence with a guided recursive feature elimination strategy to identify an optimal 8-feature subset from a 15-feature protocol. The performance of this optimized protocol was validated in vivo and benchmarked against the full acquisition and alternative reduction strategies. Parameter accuracy, preservation of anatomical contrast, and test-retest reproducibility were assessed. The reduced protocol yielded parameter estimates and cortical maps comparable to the full protocol, with low estimation errors in synthetic data and minimal impact on test-retest variability. Compared to theory-driven and heuristic reduction schemes, the optimized protocol demonstrated superior robustness, reducing the deviation in water exchange time estimates by over two-fold. In conclusion, this hybrid optimization framework enables viable imaging of neurite exchange in 14 minutes without loss of parameter fidelity. This approach supports the broader application of exchange-sensitive diffusion magnetic resonance imaging in neuroscience and clinical research, and offers a generalizable method for designing efficient acquisition protocols in biophysical parameter mapping.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12440067/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The diffusion MRI Neurite Exchange Imaging model offers a promising framework for probing gray matter microstructure by estimating parameters such as compartment sizes, diffusivities, and inter-compartmental water exchange time. However, existing protocols require long scan times. This study proposes a reduced acquisition scheme for the Connectome 2.0 scanner that preserves model accuracy while substantially shortening scan duration. We developed a data-driven framework using explainable artificial intelligence with a guided recursive feature elimination strategy to identify an optimal 8-feature subset from a 15-feature protocol. The performance of this optimized protocol was validated in vivo and benchmarked against the full acquisition and alternative reduction strategies. Parameter accuracy, preservation of anatomical contrast, and test-retest reproducibility were assessed. The reduced protocol yielded parameter estimates and cortical maps comparable to the full protocol, with low estimation errors in synthetic data and minimal impact on test-retest variability. Compared to theory-driven and heuristic reduction schemes, the optimized protocol demonstrated superior robustness, reducing the deviation in water exchange time estimates by over two-fold. In conclusion, this hybrid optimization framework enables viable imaging of neurite exchange in 14 minutes without loss of parameter fidelity. This approach supports the broader application of exchange-sensitive diffusion magnetic resonance imaging in neuroscience and clinical research, and offers a generalizable method for designing efficient acquisition protocols in biophysical parameter mapping.

加速微结构成像的可解释人工智能:连接体2.0扫描仪上的shap引导协议。
弥散性MRI神经突交换成像模型通过估计室大小、扩散率和室间水交换时间等参数,为探测灰质微观结构提供了一个有前途的框架。然而,现有的协议需要很长的扫描时间。本研究为Connectome 2.0扫描仪提出了一种简化的采集方案,该方案在保持模型准确性的同时大大缩短了扫描时间。我们开发了一个数据驱动的框架,使用可解释的人工智能和引导递归特征消除策略,从15个特征协议中识别出最优的8个特征子集。该优化方案的性能在体内得到了验证,并与完全获取和替代还原策略进行了基准测试。评估参数准确性、解剖对比保存和复试重复性。简化方案产生的参数估计和皮质图与完整方案相当,合成数据的估计误差低,对测试-重测试可变性的影响最小。与理论驱动和启发式约简方案相比,优化后的协议具有更好的鲁棒性,将水交换时间估计的偏差减少了两倍以上。总之,这种混合优化框架可以在14分钟内实现神经突交换的可行成像,而不会损失参数保真度。该方法支持交换敏感扩散磁共振成像在神经科学和临床研究中的广泛应用,并为设计生物物理参数映射的有效获取协议提供了一种可推广的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信