Adversarial Text Generation using Large Language Models for Dementia Detection.

Youxiang Zhu, Nana Lin, Kiran Sandilya Balivada, Daniel Haehn, Xiaohui Liang
{"title":"Adversarial Text Generation using Large Language Models for Dementia Detection.","authors":"Youxiang Zhu, Nana Lin, Kiran Sandilya Balivada, Daniel Haehn, Xiaohui Liang","doi":"10.18653/v1/2024.emnlp-main.1222","DOIUrl":null,"url":null,"abstract":"<p><p>Although large language models (LLMs) excel in various text classification tasks, regular prompting strategies (e.g., few-shot prompting) do not work well with dementia detection via picture description. The challenge lies in the language marks for dementia are unclear, and LLM may struggle with relating its internal knowledge to dementia detection. In this paper, we present an accurate and interpretable classification approach by Adversarial Text Generation (ATG), a novel decoding strategy that could relate dementia detection with other tasks. We further develop a comprehensive set of instructions corresponding to various tasks and use them to guide ATG, achieving the best accuracy of 85%, >10% improvement compared to the regular prompting strategies. In addition, we introduce feature context, a human-understandable text that reveals the underlying features of LLM used for classifying dementia. From feature contexts, we found that dementia detection can be related to tasks such as assessing attention to detail, language, and clarity with specific features of the environment, character, and other picture content or language-related features. Future work includes incorporating multi-modal LLMs to interpret speech and picture information.</p>","PeriodicalId":74540,"journal":{"name":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","volume":"2024 ","pages":"21918-21933"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12439105/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2024.emnlp-main.1222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although large language models (LLMs) excel in various text classification tasks, regular prompting strategies (e.g., few-shot prompting) do not work well with dementia detection via picture description. The challenge lies in the language marks for dementia are unclear, and LLM may struggle with relating its internal knowledge to dementia detection. In this paper, we present an accurate and interpretable classification approach by Adversarial Text Generation (ATG), a novel decoding strategy that could relate dementia detection with other tasks. We further develop a comprehensive set of instructions corresponding to various tasks and use them to guide ATG, achieving the best accuracy of 85%, >10% improvement compared to the regular prompting strategies. In addition, we introduce feature context, a human-understandable text that reveals the underlying features of LLM used for classifying dementia. From feature contexts, we found that dementia detection can be related to tasks such as assessing attention to detail, language, and clarity with specific features of the environment, character, and other picture content or language-related features. Future work includes incorporating multi-modal LLMs to interpret speech and picture information.

使用大型语言模型的对抗文本生成用于痴呆检测。
尽管大型语言模型(llm)在各种文本分类任务中表现出色,但常规提示策略(例如,few-shot提示)在通过图片描述检测痴呆症方面效果不佳。挑战在于痴呆症的语言标记尚不清楚,LLM可能难以将其内部知识与痴呆症检测联系起来。在本文中,我们提出了一种通过对抗性文本生成(ATG)的准确和可解释的分类方法,这是一种新的解码策略,可以将痴呆症检测与其他任务联系起来。我们进一步开发了一套对应于各种任务的综合指令,并使用它们来指导ATG,达到了85%的最佳准确率,比常规提示策略提高了100 - 10%。此外,我们还引入了特征上下文,这是一种人类可理解的文本,揭示了用于分类痴呆症的LLM的潜在特征。从特征上下文中,我们发现痴呆症检测可以与评估对细节、语言和清晰度的注意等任务有关,这些任务与环境、角色和其他图片内容或语言相关特征的特定特征有关。未来的工作包括整合多模态llm来解释语音和图像信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信