Allele-specific conformational rescue of KIF1A(T99M) by genetic suppressors in a C. elegans model of KIF1A-associated neurological disorder.

IF 3.6 3区 生物学 Q3 CELL BIOLOGY
Zihan Chen, Yongping Chai, Zhengyang Guo, Xuanyu Fu, Wei Li, Jinxiang Zhang, Guangshuo Ou, Hui Wang
{"title":"Allele-specific conformational rescue of KIF1A(T99M) by genetic suppressors in a C. elegans model of KIF1A-associated neurological disorder.","authors":"Zihan Chen, Yongping Chai, Zhengyang Guo, Xuanyu Fu, Wei Li, Jinxiang Zhang, Guangshuo Ou, Hui Wang","doi":"10.1242/jcs.264216","DOIUrl":null,"url":null,"abstract":"<p><p>KIF1A-associated neurological disorder (KAND) arises from mutations in the microtubule motor KIF1A, disrupting synaptic vesicle transport. Here, we investigate the pathogenic T99M substitution in KIF1A's P-loop, which induces steric hindrance, impairing ATP/ADP coordination and motor activity. Using CRISPR-engineered C. elegans expressing the homologous UNC-104(T95M) mutation, we conducted forward genetic screens and identified recurrent intragenic suppressors (T95V/I) that restored animal motility and synaptic vesicle distribution. Molecular dynamics simulations revealed that replacing methionine with valine/isoleucine alleviated steric clashes in the nucleotide-binding pocket and stabilized Mg²⁺-ATP coordination. Biochemical assays showed that T95V/I partially recovered microtubule gliding velocity and processivity, demonstrating that even modest motor reactivation mitigates neuronal dysfunction. Inspired by prior success with fisetin in rescuing the KIF1A R11Q variant, we propose allele-specific conformational stabilization as a therapeutic strategy for KAND. Our findings highlight the structural plasticity of motor domain and provide a framework for precision therapies targeting pathogenic variants through genetic suppressors.</p>","PeriodicalId":15227,"journal":{"name":"Journal of cell science","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cell science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jcs.264216","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

KIF1A-associated neurological disorder (KAND) arises from mutations in the microtubule motor KIF1A, disrupting synaptic vesicle transport. Here, we investigate the pathogenic T99M substitution in KIF1A's P-loop, which induces steric hindrance, impairing ATP/ADP coordination and motor activity. Using CRISPR-engineered C. elegans expressing the homologous UNC-104(T95M) mutation, we conducted forward genetic screens and identified recurrent intragenic suppressors (T95V/I) that restored animal motility and synaptic vesicle distribution. Molecular dynamics simulations revealed that replacing methionine with valine/isoleucine alleviated steric clashes in the nucleotide-binding pocket and stabilized Mg²⁺-ATP coordination. Biochemical assays showed that T95V/I partially recovered microtubule gliding velocity and processivity, demonstrating that even modest motor reactivation mitigates neuronal dysfunction. Inspired by prior success with fisetin in rescuing the KIF1A R11Q variant, we propose allele-specific conformational stabilization as a therapeutic strategy for KAND. Our findings highlight the structural plasticity of motor domain and provide a framework for precision therapies targeting pathogenic variants through genetic suppressors.

基因抑制因子在线虫KIF1A相关神经系统疾病模型中对KIF1A(T99M)等位基因特异性构象的拯救
KIF1A相关神经系统疾病(KAND)由微管运动KIF1A突变引起,破坏突触囊泡运输。在这里,我们研究了KIF1A的p环中致病性T99M的替代,其诱导空间位阻,损害ATP/ADP协调和运动活性。利用crispr基因工程的表达同源UNC-104(T95M)突变的秀丽隐杆线虫,我们进行了前向遗传筛选,并鉴定了可恢复动物运动和突触囊泡分布的复发性基因内抑制因子(T95V/I)。分子动力学模拟显示,用缬氨酸/异亮氨酸取代蛋氨酸减轻了核苷酸结合口袋中的空间冲突,并稳定了Mg 2 + -ATP的配位。生化实验表明,T95V/I部分恢复了微管的滑动速度和处理能力,表明即使是适度的运动再激活也能减轻神经元功能障碍。受非西汀先前成功挽救KIF1A R11Q变体的启发,我们提出等位基因特异性构象稳定作为KAND的治疗策略。我们的研究结果强调了运动域的结构可塑性,并为通过基因抑制因子靶向致病变异的精确治疗提供了框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of cell science
Journal of cell science 生物-细胞生物学
CiteScore
7.30
自引率
2.50%
发文量
393
审稿时长
1.4 months
期刊介绍: Journal of Cell Science publishes cutting-edge science, encompassing all aspects of cell biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信