Interpretable Machine Learning Models for Predicting Lateral Pelvic Lymph Node Metastasis in Rectal Cancer: A Chinese Multicenter Retrospective Study.

IF 5.6 2区 医学 Q1 ONCOLOGY
JCO precision oncology Pub Date : 2025-09-01 Epub Date: 2025-09-17 DOI:10.1200/PO-25-00192
Tixian Xiao, Wei Zhao, Zhen Sun, Fangze Wei, Fuqiang Zhao, Fei Huang, Zeyu Wu, Junge Bai, Xin Wang, Qian Liu
{"title":"Interpretable Machine Learning Models for Predicting Lateral Pelvic Lymph Node Metastasis in Rectal Cancer: A Chinese Multicenter Retrospective Study.","authors":"Tixian Xiao, Wei Zhao, Zhen Sun, Fangze Wei, Fuqiang Zhao, Fei Huang, Zeyu Wu, Junge Bai, Xin Wang, Qian Liu","doi":"10.1200/PO-25-00192","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Internal iliac and obturator lymph nodes are common sites of metastasis in rectal cancer. This study developed a machine learning (ML) model using clinical data to predict lymph node metastasis and applied the Shapley Additive explanations (SHAP) method for interpretation.</p><p><strong>Materials and methods: </strong>Retrospectively, data from patients with rectal cancer at four Chinese centers-who underwent total mesorectal excision and lateral pelvic lymph node dissection without neoadjuvant therapy-were collected. Two centers provided training/test sets (3:1 ratio) and two centers supplied external validation. Lymph node enlargement was determined by imaging and confirmed by pathology. Five ML models were evaluated by AUC, accuracy, and F1 score. Key features included demographics, tumor stage, tumor-to-anal verge distance, imaging measurements, tumor histological differentiation, preoperative carcinoembryonic antigen, and carbohydrate antigen 19-9. SHAP was used to assess feature importance.</p><p><strong>Results: </strong>Of the 411 cases (174 positives) in the training/test sets and 109 cases (43 positives) in external validation, the random forest (RF) model ranked second in terms of AUC and accuracy in the training set (0.999, 0.995), whereas it achieved the highest AUC and accuracy (0.877 and 0.788) in the test set. In the external validation, the RF model outperformed all other ML models (AUC of 0.899, accuracy of 0.827). Overall, the RF model demonstrates the superior overall performance. According to the SHAP analysis, the most important predictors of internal iliac and obturator lymph node metastasis were, in descending order, the short-axis diameter of enlarged lymph nodes, regional lymph node metastasis, and tumor-to-anal verge distance. At the individual patient level, SHAP force plots provided explanations of the RF model predictions for internal iliac and obturator lymph node metastasis.</p><p><strong>Conclusion: </strong>An interpretable ML model was developed that accurately predicts internal iliac and obturator lymph node metastasis using clinical data. SHAP analysis enhances understanding of feature contributions, supporting personalized treatment planning.</p>","PeriodicalId":14797,"journal":{"name":"JCO precision oncology","volume":"9 ","pages":"e2500192"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445183/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO precision oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1200/PO-25-00192","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Internal iliac and obturator lymph nodes are common sites of metastasis in rectal cancer. This study developed a machine learning (ML) model using clinical data to predict lymph node metastasis and applied the Shapley Additive explanations (SHAP) method for interpretation.

Materials and methods: Retrospectively, data from patients with rectal cancer at four Chinese centers-who underwent total mesorectal excision and lateral pelvic lymph node dissection without neoadjuvant therapy-were collected. Two centers provided training/test sets (3:1 ratio) and two centers supplied external validation. Lymph node enlargement was determined by imaging and confirmed by pathology. Five ML models were evaluated by AUC, accuracy, and F1 score. Key features included demographics, tumor stage, tumor-to-anal verge distance, imaging measurements, tumor histological differentiation, preoperative carcinoembryonic antigen, and carbohydrate antigen 19-9. SHAP was used to assess feature importance.

Results: Of the 411 cases (174 positives) in the training/test sets and 109 cases (43 positives) in external validation, the random forest (RF) model ranked second in terms of AUC and accuracy in the training set (0.999, 0.995), whereas it achieved the highest AUC and accuracy (0.877 and 0.788) in the test set. In the external validation, the RF model outperformed all other ML models (AUC of 0.899, accuracy of 0.827). Overall, the RF model demonstrates the superior overall performance. According to the SHAP analysis, the most important predictors of internal iliac and obturator lymph node metastasis were, in descending order, the short-axis diameter of enlarged lymph nodes, regional lymph node metastasis, and tumor-to-anal verge distance. At the individual patient level, SHAP force plots provided explanations of the RF model predictions for internal iliac and obturator lymph node metastasis.

Conclusion: An interpretable ML model was developed that accurately predicts internal iliac and obturator lymph node metastasis using clinical data. SHAP analysis enhances understanding of feature contributions, supporting personalized treatment planning.

Abstract Image

Abstract Image

Abstract Image

预测直肠癌盆腔外侧淋巴结转移的可解释机器学习模型:中国多中心回顾性研究。
目的:髂内淋巴结和闭孔淋巴结是直肠癌常见的转移部位。本研究开发了一种机器学习(ML)模型,利用临床数据预测淋巴结转移,并应用Shapley加法解释(SHAP)方法进行解释。材料和方法:回顾性地收集了中国四个中心的直肠癌患者的资料,这些患者在没有新辅助治疗的情况下接受了全直肠系膜切除术和盆腔外侧淋巴结清扫。两个中心提供训练/测试集(3:1比例),两个中心提供外部验证。淋巴结肿大由影像学确定,病理证实。通过AUC、准确率和F1评分对5个ML模型进行评价。主要特征包括人口统计学、肿瘤分期、肿瘤到肛门边缘距离、影像学测量、肿瘤组织学分化、术前癌胚抗原和碳水化合物抗原19-9。采用SHAP评估特征的重要性。结果:在训练/测试集的411例(174例阳性)和外部验证的109例(43例阳性)中,随机森林(RF)模型在训练集中的AUC和准确率排名第二(0.999,0.995),而在测试集中的AUC和准确率最高(0.877,0.788)。在外部验证中,RF模型优于所有其他ML模型(AUC为0.899,准确率为0.827)。总体而言,射频模型显示了优越的综合性能。根据SHAP分析,髂内和闭孔淋巴结转移的最重要预测因子依次为肿大淋巴结的短轴直径、区域淋巴结转移、肿瘤到肛门的边缘距离。在个体患者水平上,SHAP力图为RF模型预测髂内和闭孔淋巴结转移提供了解释。结论:建立了一种可解释的ML模型,可根据临床数据准确预测髂内和闭孔淋巴结转移。SHAP分析增强了对特征贡献的理解,支持个性化的治疗计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
4.30%
发文量
363
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信