Evaluating genome sequencing strategies: trio, singleton, and standard testing in rare disease diagnosis.

IF 10.4 1区 生物学 Q1 GENETICS & HEREDITY
Daniel Kaschta, Christina Post, Franziska Gaass, Milad Al-Tawil, Vincent Arriens, Saranya Balachandran, Tobias Bäumer, Valerie Berge, Friederike Birgel, Andreas Dalski, Maike Dittmar, Andre Franke, Sören Franzenburg, Janina Fuß, Bettina Gehring, Rebecca Gembicki, Bianca Greiten, Kristin Grohte, Britta Hanker, Kristian Händler, Lana Harder, Yorck Hellenbroich, Theresia Herget, Gloria Herrmann, Olaf Hiort, Kirstin Hoff, Birga Hoffmann, Nadine Hornig, Irina Hüning, Monika Kautza-Lucht, Juliane Köhler, Anna-Sophie Liegmann, Jasmin Lisfeld, Britt-Sabina Löscher, Nils G Margraf, Michelle Meyenborg, Anna Möllring, Hiltrud Muhle, Eva Maria Murga Penas, Henning Nommels, Dzhoy Papingi, Imke Poggenburg, Jelena Pozojevic, Philip Rosenstiel, Andreas Recke, Kimberly Roberts, Laelia Rösler, Franka Rust, Maj-Britt Salewski, Katharina Schau-Römer, Christian Schlein, Varun K A Sreenivasan, Louiza Toutouna, Caroline Utermann-Thüsing, Amelie T van der Ven, Alexander E Volk, Janne Wehnert, Sandra Wilson, Rixa Woitschach, Veronica Yumiceba, Christine Zühlke, Alexander Münchau, Norbert Brüggemann, Inga Vater, Almuth Caliebe, Inga Nagel, Malte Spielmann
{"title":"Evaluating genome sequencing strategies: trio, singleton, and standard testing in rare disease diagnosis.","authors":"Daniel Kaschta, Christina Post, Franziska Gaass, Milad Al-Tawil, Vincent Arriens, Saranya Balachandran, Tobias Bäumer, Valerie Berge, Friederike Birgel, Andreas Dalski, Maike Dittmar, Andre Franke, Sören Franzenburg, Janina Fuß, Bettina Gehring, Rebecca Gembicki, Bianca Greiten, Kristin Grohte, Britta Hanker, Kristian Händler, Lana Harder, Yorck Hellenbroich, Theresia Herget, Gloria Herrmann, Olaf Hiort, Kirstin Hoff, Birga Hoffmann, Nadine Hornig, Irina Hüning, Monika Kautza-Lucht, Juliane Köhler, Anna-Sophie Liegmann, Jasmin Lisfeld, Britt-Sabina Löscher, Nils G Margraf, Michelle Meyenborg, Anna Möllring, Hiltrud Muhle, Eva Maria Murga Penas, Henning Nommels, Dzhoy Papingi, Imke Poggenburg, Jelena Pozojevic, Philip Rosenstiel, Andreas Recke, Kimberly Roberts, Laelia Rösler, Franka Rust, Maj-Britt Salewski, Katharina Schau-Römer, Christian Schlein, Varun K A Sreenivasan, Louiza Toutouna, Caroline Utermann-Thüsing, Amelie T van der Ven, Alexander E Volk, Janne Wehnert, Sandra Wilson, Rixa Woitschach, Veronica Yumiceba, Christine Zühlke, Alexander Münchau, Norbert Brüggemann, Inga Vater, Almuth Caliebe, Inga Nagel, Malte Spielmann","doi":"10.1186/s13073-025-01516-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Short-read genome sequencing (GS) is among the most comprehensive genetic testing methods available, capable of detecting single-nucleotide variants, copy-number variants, mitochondrial variants, repeat expansions, and structural variants in a single assay. Despite its technical advantages, the full clinical utility of GS in real-world diagnostic settings remains to be fully established.</p><p><strong>Methods: </strong>This study systematically compared singleton GS (sGS), trio GS (tGS), and exome sequencing-based standard-of-care (SoC) genetic testing in 416 patients with rare diseases in a blinded, prospective study. Three independent teams with divergent baseline expertise evaluated the diagnostic yield of GS as a unifying first-tier test and directly compared its variant detection capabilities, learning curve, and clinical feasibility. The SoC team had extensive prior experience in exome-based diagnostics, while the sGS and tGS teams were newly trained in GS interpretation. Diagnostic yield was assessed through both prospective and retrospective analyses.</p><p><strong>Results: </strong>In our prospective analysis, tGS achieved the highest diagnostic yield for likely pathogenic/pathogenic variants at 36.1% in the newly trained team, surpassing the experienced SoC team at 35.1% and the newly trained sGS team at 28.8%. To evaluate which variants could technically be identified and account for differences in team experience, we conducted a retrospective analysis, achieving diagnostic yields of 36.7% for SoC, 39.1% for sGS, and 40.0% for tGS. The superior yield of GS was attributed to its ability to detect deep intronic, non-coding, and small copy-number variants missed by SoC. Notably, tGS identified three de novo variants classified as likely pathogenic based on recent GeneMatcher collaborations and newly published gene-disease association studies.</p><p><strong>Conclusions: </strong>Our findings demonstrate that GS, particularly tGS, outperforms SoC in diagnosing rare diseases, with sGS providing a more cost-effective alternative. These results suggest that GS should be considered a first-tier genetic test, offering an efficient, single-step approach to reduce the diagnostic odyssey for patients with rare diseases. The trio approach proved especially valuable for less experienced teams, as inheritance data facilitated variant interpretation and maintained high diagnostic yield, while experienced teams achieved comparable results with singleton analysis alone.</p>","PeriodicalId":12645,"journal":{"name":"Genome Medicine","volume":"17 1","pages":"100"},"PeriodicalIF":10.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445032/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13073-025-01516-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Short-read genome sequencing (GS) is among the most comprehensive genetic testing methods available, capable of detecting single-nucleotide variants, copy-number variants, mitochondrial variants, repeat expansions, and structural variants in a single assay. Despite its technical advantages, the full clinical utility of GS in real-world diagnostic settings remains to be fully established.

Methods: This study systematically compared singleton GS (sGS), trio GS (tGS), and exome sequencing-based standard-of-care (SoC) genetic testing in 416 patients with rare diseases in a blinded, prospective study. Three independent teams with divergent baseline expertise evaluated the diagnostic yield of GS as a unifying first-tier test and directly compared its variant detection capabilities, learning curve, and clinical feasibility. The SoC team had extensive prior experience in exome-based diagnostics, while the sGS and tGS teams were newly trained in GS interpretation. Diagnostic yield was assessed through both prospective and retrospective analyses.

Results: In our prospective analysis, tGS achieved the highest diagnostic yield for likely pathogenic/pathogenic variants at 36.1% in the newly trained team, surpassing the experienced SoC team at 35.1% and the newly trained sGS team at 28.8%. To evaluate which variants could technically be identified and account for differences in team experience, we conducted a retrospective analysis, achieving diagnostic yields of 36.7% for SoC, 39.1% for sGS, and 40.0% for tGS. The superior yield of GS was attributed to its ability to detect deep intronic, non-coding, and small copy-number variants missed by SoC. Notably, tGS identified three de novo variants classified as likely pathogenic based on recent GeneMatcher collaborations and newly published gene-disease association studies.

Conclusions: Our findings demonstrate that GS, particularly tGS, outperforms SoC in diagnosing rare diseases, with sGS providing a more cost-effective alternative. These results suggest that GS should be considered a first-tier genetic test, offering an efficient, single-step approach to reduce the diagnostic odyssey for patients with rare diseases. The trio approach proved especially valuable for less experienced teams, as inheritance data facilitated variant interpretation and maintained high diagnostic yield, while experienced teams achieved comparable results with singleton analysis alone.

Abstract Image

Abstract Image

Abstract Image

评估基因组测序策略:三人组、单例组和罕见病诊断中的标准检测。
背景:短读基因组测序(GS)是最全面的基因检测方法之一,能够检测单核苷酸变异、拷贝数变异、线粒体变异、重复扩增和结构变异。尽管具有技术优势,但GS在现实世界诊断环境中的全面临床应用仍有待充分建立。方法:本研究系统地比较了416例罕见病患者的单例GS (sGS)、三人GS (tGS)和基于外显子组测序的标准治疗(SoC)基因检测。三个具有不同基线专业知识的独立团队评估了GS作为统一一线检测的诊断率,并直接比较了其不同的检测能力、学习曲线和临床可行性。SoC团队在基于外显子组的诊断方面拥有丰富的经验,而sGS和tGS团队在GS解释方面刚刚接受过培训。通过前瞻性和回顾性分析评估诊断率。结果:在我们的前瞻性分析中,tGS在新培训团队中对可能的致病性/致病性变异的诊断率最高,为36.1%,超过了经验丰富的SoC团队的35.1%和新培训的sGS团队的28.8%。为了评估哪些变异在技术上可以识别并解释团队经验的差异,我们进行了回顾性分析,获得了SoC的诊断率36.7%,sGS的诊断率39.1%,tGS的诊断率40.0%。GS的高产量归因于其检测深层内含子、非编码和SoC缺失的小拷贝数变异的能力。值得注意的是,根据最近的GeneMatcher合作和新发表的基因-疾病关联研究,tGS确定了三种被归类为可能致病的新生变异。结论:我们的研究结果表明,GS,特别是tGS,在诊断罕见疾病方面优于SoC,而sGS提供了更具成本效益的替代方案。这些结果表明,GS应被视为一级基因检测,提供一种有效的、单步的方法来减少罕见病患者的诊断过程。对于经验不足的团队来说,三重奏方法特别有价值,因为继承数据促进了变异解释并保持了较高的诊断率,而经验丰富的团队仅使用单例分析就可以获得类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Medicine
Genome Medicine GENETICS & HEREDITY-
CiteScore
20.80
自引率
0.80%
发文量
128
审稿时长
6-12 weeks
期刊介绍: Genome Medicine is an open access journal that publishes outstanding research applying genetics, genomics, and multi-omics to understand, diagnose, and treat disease. Bridging basic science and clinical research, it covers areas such as cancer genomics, immuno-oncology, immunogenomics, infectious disease, microbiome, neurogenomics, systems medicine, clinical genomics, gene therapies, precision medicine, and clinical trials. The journal publishes original research, methods, software, and reviews to serve authors and promote broad interest and importance in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信