A Dose-Aware Model for Revealing Dose-Risk Relationship of Drug-Drug Interaction.

IF 3 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Yi Shi, Anna Sun, Yuedi Yang, Hongmei Nan, Jing Xu, Mu Shan, Michael T Eadon, Jing Su, Pengyue Zhang
{"title":"A Dose-Aware Model for Revealing Dose-Risk Relationship of Drug-Drug Interaction.","authors":"Yi Shi, Anna Sun, Yuedi Yang, Hongmei Nan, Jing Xu, Mu Shan, Michael T Eadon, Jing Su, Pengyue Zhang","doi":"10.1002/psp4.70114","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-drug interaction (DDI) is a common cause of adverse drug events (ADEs). Despite real-world data-based studies have developed knowledge on DDI, the precise relationships between doses of two-drug combinations exposure and the risks of ADEs remain largely unknown. The estimation of the dose-risk relationship (DRR) under commonly used regression models could be subject to model misspecification or overspecification. We developed a dose-aware model (DAM) for revealing DRR. DAM could improve the DRR estimation by identifying the optimal model from a large number of meaningful models of doses of two-drug combinations exposure and risks of ADE. We compared DAM with commonly used models (e.g., exposed-versus-unexposed model, dose-response model, and saturated model), in which DAM had higher performance metrics on model fitting in real-world data analyses and DRR estimation in a simulation study. In conclusion, DAM is a powerful tool for estimating DRR for potential adverse two-drug combinations, which could be used to mitigate DDI-induced harm.</p>","PeriodicalId":10774,"journal":{"name":"CPT: Pharmacometrics & Systems Pharmacology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT: Pharmacometrics & Systems Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/psp4.70114","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug-drug interaction (DDI) is a common cause of adverse drug events (ADEs). Despite real-world data-based studies have developed knowledge on DDI, the precise relationships between doses of two-drug combinations exposure and the risks of ADEs remain largely unknown. The estimation of the dose-risk relationship (DRR) under commonly used regression models could be subject to model misspecification or overspecification. We developed a dose-aware model (DAM) for revealing DRR. DAM could improve the DRR estimation by identifying the optimal model from a large number of meaningful models of doses of two-drug combinations exposure and risks of ADE. We compared DAM with commonly used models (e.g., exposed-versus-unexposed model, dose-response model, and saturated model), in which DAM had higher performance metrics on model fitting in real-world data analyses and DRR estimation in a simulation study. In conclusion, DAM is a powerful tool for estimating DRR for potential adverse two-drug combinations, which could be used to mitigate DDI-induced harm.

揭示药物-药物相互作用剂量-风险关系的剂量感知模型。
药物-药物相互作用(DDI)是药物不良事件(ADEs)的常见原因。尽管基于真实世界数据的研究已经发展了关于DDI的知识,但两种药物联合暴露剂量与ade风险之间的确切关系在很大程度上仍然未知。在常用的回归模型下对剂量-风险关系(DRR)的估计可能存在模型错配或过配的问题。我们开发了一个剂量感知模型(DAM)来揭示DRR。DAM可以通过从大量有意义的双药联合暴露剂量和ADE风险模型中识别出最优模型来改进DRR估计。我们将DAM与常用的模型(例如,暴露与未暴露模型,剂量-反应模型和饱和模型)进行了比较,其中DAM在真实数据分析中的模型拟合和模拟研究中的DRR估计方面具有更高的性能指标。总之,DAM是估计潜在不良双药联合dr的有力工具,可用于减轻ddi引起的伤害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
11.40%
发文量
146
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信